
Noname manuscript No.
(will be inserted by the editor)

Investigating Misunderstanding Code Patterns in C
Open-Source Software Projects

Flávio Medeiros · Gabriel Lima ·
Guilherme Amaral · Sven Apel ·
Christian Kästner · Márcio Ribeiro ·
Rohit Gheyi

Received: date / Accepted: date

Abstract Maintenance consumes 40% to 80% of software development costs.
So, it is essential to write source code that is easy to understand to reduce the
costs with maintenance. Improving code understanding is important because
developers often mistake the meaning of code, and misjudge the program
behavior, which can lead to errors. There are patterns in source code, such as
operator precedence, and comma operator, that have been shown to influence
code understanding negatively. Despite initial results, these patterns have not
been evaluated in a real-world setting, though. Thus, it is not clear whether
developers agree that the patterns studied by researchers can cause substantial
misunderstandings in real-world practice. To better understand the relevance
of misunderstanding patterns, we applied a mixed research method approach,
by performing repository mining and a survey with developers, to evaluate
misunderstanding patterns in 50 C open-source projects, including Apache,
OpenSSL, and Python. Overall, we found more than 109K occurrences of the 12
patterns in practice. Our study shows that according to developers only some
patterns considered previously by researchers may cause misunderstandings.
Our results complement previous studies by taking the perception of developers
into account.

Keywords Misunderstanding Patterns · Repository Mining · Survey

Flávio Medeiros and Gabriel Lima
Federal Institute of Alagoas (IFAL), Maceió, Alagoas, Brazil

Guilherme Amaral and Márcio Ribeiro
Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil

Christian Kästner
Carnegie Mellon University (CMU), Pittsburgh, Pennsylvania, USA

Sven Apel
Universität Passau, Passau, Germany

Rohit Gheyi
Federal University of Campina Grande (UFCG), Paraíba, Brazil

2 Flávio Medeiros et al.

1 Introduction

Software maintenance is the modification of a software product after delivery
to add new functionalities, correct faults, improve design or performance, or
adapt programs to different hardware (ISO/IEC/IEEE, 2006). Maintenance
consumes 40% to 80% of the software development costs (Glass, 2001). So,
writing code that is easy to understand and to change (Buse and Weimer, 2008;
Pahal and Chillar, 2017) is essential to reduce costs and time to market (Jha
et al, 2016). In open-source projects, in which often many developers contribute
to the code base, it is necessary to pay special attention to code understanding
and standards to keep the code easier to review, debug, and to find bugs, as
described in the guidelines for contributors1 of the project Curl, as well as in
a number of research studies (Beller et al, 2014; Rigby et al, 2008; Stamelos
et al, 2002).

Even when developers take care of the code base, they often misunderstand
the meaning of source code, and misjudge a program’s true behavior (Gopstein
et al, 2017). This happens even when considering small and isolated patterns in
the source code, which can still lead to significant runtime errors. Thus, it is not
only important to define a proper high-level architecture of the system (Fowler
et al, 1999; Gamma et al, 1995), but also to avoid certain code patterns that
influence code understanding negatively. Gopstein et al (2017) discussed a
number of bugs related to small and isolated code patterns that caused losses
of millions of dollars, such as Apple’s goto fail SSL bug (Bland, 2014), the
Ariane 5 floating point overflow (Dowson, 1997), and the cascading network
failure of AT&T (Burke, 1995).

In the past, researchers have evaluated such misunderstanding patterns in
C programs by performing controlled experiments with programmers (Gopstein
et al, 2017; Malaquias et al, 2017; Schulze et al, 2013). A misunderstanding
pattern is a small code excerpt that can influence code understanding negatively.
These studies showed that certain code patterns influence code understanding
negatively. However, the participants of the experiment of (Gopstein et al,
2017), for instance, were undergraduate students with at least three months of
experience, which might not be sufficient to understand complex programming
language concepts in detail.

To obtain a better understanding about the relevance of misunderstanding
patterns in practice, we applied a mixed research method approach (Creswell
and Clark, 2011; Easterbrook et al, 2008), by applying software repository
mining, and by conducting a survey with software developers, with the goal
of evaluating misunderstanding code patterns in 50 real-world open-source
projects, such as Apache, OpenSSL, and Python. We aim at answering the
following research questions:

– RQ1. What is the frequency of occurrences of misunderstanding patterns
in open-source projects?

1 https://github.com/curl/curl/blob/master/docs/CODE_STYLE.md

Investigating Misunderstanding Code Patterns in C 3

– RQ2. Do developers of open-source projects agree that misunderstanding
patterns influence code understanding negatively?

– RQ3. What are the guidelines that open-source projects provide to avoid
misunderstanding code patterns?

– RQ4. Do developers of open-source projects accept pull requests to remove
instances of misunderstanding patterns?

Our study considers 12 misunderstanding patterns, which we collected
by analyzing the results of previous work and by studying guidelines for
contributors of open-source projects. We selected the patterns dangling else
and initializations in conditions from the guidelines of open-source projects,
and the other misunderstanding patterns from Gopstein et al (2017). We found
occurrences of the majority of patterns studied in this work. In the presence of
misunderstanding patterns, developers might misjudge the program behavior,
and introduce runtime errors accidentally. Overall, we found more than 109
thousand occurrences of 11 out of 12 patterns considered in our study. However,
we found no occurrences of pattern reversed subscript, which is criticized in
prior work (Gopstein et al, 2017), considering the 50 C projects.

By means of a survey with 97 developers, we learned that most developers
agree that the presence of 6 out of 12 misunderstanding patterns can influence
code understanding negatively. The reason is that the 6 misunderstanding
patterns require developers to know specific programming language concepts
in advance to understand how the patterns work. For instance, there is no way
to know for sure how a boolean expression is going to be evaluated without
knowing exactly the operator precedence rules.

Furthermore, we found that the majority of guidelines for code contributors
in open-source projects, address code style, pull request information, and
bug report instructions. The guidelines instruct developers to use specific
tools or mailing lists for sending pull requests, and bug reports, and they
describe very specific code style issues, such as to use spaces instead of tabs
for indentation, and to include spaces before and after operators. Only a
few projects provide guidelines regarding code understanding, such as Curl,
Librdkafka, OpenSSL, and Reactos, which guide developers to avoid certain
misunderstanding patterns.

To learn about the relevance of misunderstanding patterns, we submitted
35 pull requests to remove instances of misunderstanding patterns that we
found in open-source projects. We received feedback for 21 pull requests, and
developers accepted 8 pull requests (38%). Despite this being a clear sign that
removing misunderstanding pattern is beneficial, we learned that developers
do not like to change code that is working to improve only code style issues
without fixing bug, or adding new functionalities, which might be one of the
reasons for the rather low acceptance rate. A replication package for this study
is available at our supplementaryWebsite2 and Zenodo (Medeiros et al, 2018b).

The key contributions of this article are:

2 http://cpsoftware.com.br/patterns/index.html

4 Flávio Medeiros et al.

– A better understanding regarding which code patterns may influence code
understanding negatively, based on a study that triangulates the results
of a survey, repository mining, and pull request submissions, considering
real-world settings (Section 4);

– A set of patterns that influence code understanding negatively about which
most developers of open-source projects agree (Section 4.3);

– A dataset of 50 C projects, showing that certain misunderstanding patterns
occur frequently in practice (Section 4.3).

The remainder of this article is organized as follows. Section 2 discusses
a real bug related to the use of a misunderstand pattern. In Section 3, we
introduce the misunderstanding patterns studied in this article. Section 4
presents the settings and results of the empirical study, which we performed to
better understand misunderstanding code patterns. In Section 5, we list several
code guidelines for practitioners deduced from our empirical study. Section 6
presents a literature review of related work, and Section 7 summarises the
article.

2 Motivating Example

Developers often make mistakes when trying to understand small, and isolated
parts of the source code, which can lead to errors. For instance, OpenH264 3

is a project implementing a codec library that supports H.264 encoding and
decoding. In Figure 1 (a), we present an excerpt of OpenH264’s source code. It
contains a runtime error arising from the misunderstanding pattern dangling
else, which we discuss in Section 3. Notice that there is an else statement at
Line 9. This statement is supposed to belong to the if statement that starts
at Line 6. However, there is no curly bracket, so the else statement actually
belongs to the if statement that starts at Line 7. The reason is that else
statements in C belong to the innermost if statement when there is no curly
bracket. During code reviews, the developers of OpenH264 fixed the error that
we discussed here by adding curly brackets,4 as we can see in Figure 1 (b).

Fig. 1: (a) A code snippet of OpenH264 with an error arising from the misunderstanding
pattern dangling else, (b) a solution to fix the error by adding curly brackets.

3 http://www.openh264.org/
4 https://rbcommons.com/s/OpenH264/r/465/diff/1#0

Investigating Misunderstanding Code Patterns in C 5

Many coding standards and style guides recommend to use curly brackets
to avoid the misunderstanding pattern dangling else. The Mozilla coding style
guide,5 for instance, suggests developers to always include brackets, even in
single-line blocks of if/else statements. Other authors (Cannon et al, 2000;
Darnell and Margolis, 1996; Scott, 2000) stated that if you have a nested
mixture of if/else statements, especially with misleading indentation, even
expert developers may introduce errors.

Previous studies (Dijkstra, 1968; Elgot, 1976; Gopstein et al, 2017; Marshall
and Webber, 2000; Wulf and Shaw, 1973) refer to misunderstanding patterns
that may cause runtime errors similar to the one that we discuss here. However,
little effort has been put into understanding the relevance of these patterns
using real-world settings. Most prior work performs controlled experiments
with students (Gopstein et al, 2017; Malaquias et al, 2017; Schulze et al,
2013), with at least three months of experience (Gopstein et al, 2017), which
might not be sufficient to understand details regarding programming language
concepts. In this article, we study misunderstanding patterns by using a corpus
of 50 C open-source projects (see Table 2), on which we performed an empirical
study to better understand such patterns, as we discuss in Section 4.

3 Misunderstanding Patterns in Source Code

In this section, we describe the misunderstanding patterns that we considered
in our study. We collected these patterns by analyzing the results of different
studies (Creswell and Clark, 2011; Easterbrook et al, 2008), including a review
of previous work, and by studying the guidelines for contributors provided by
36 open-source projects of our corpus, and the Mozilla, Google,6 and Linux 7

coding style guides.
We include only patterns that we can detect syntactically without using

semantic information. For instance, Gopstein et al (2017) present a pattern
related to the use of the same variable for different purposes. To detect it,
we need semantic information. So, we have not considered this pattern in our
study. Next, we present one example of each pattern included in our study,
but our tool is also able to detect variations of the patterns. The complete list
of the variations is available at our Website.

In Pattern 1, on the left side, we present the misunderstanding pattern
dangling else. It is not obvious that the else statement starting at Line 4 is
part of the if statement that starts at Line 2, except for the indentation that
may change during maintenance tasks. There is an implicit concept in this
code snippet, and developers need to know that the else clause belongs to
closest if statement. On the right side, we show one possible way to remove
this pattern, in which there are no doubts regarding the respective if/else
statement.

5 https://developer.mozilla.org/docs/Mozilla/Developer_guide/Coding_Style
6 https://github.com/google/styleguide
7 https://www.kernel.org/doc/html/v4.10/process/coding-style.html

6 Flávio Medeiros et al.

Pattern 1 〈Dangling Else〉

We present the misunderstanding pattern initialization in conditions in
Pattern 2, on the left side. Note that variable var_1 is initialized and compared
to the result of a function in Line 1. Again, developers need to know that an
assignment returns the value of the expression on the left, that is, the value
of var_1, in this case. On the right side, we present a possibility to remove
this misunderstanding pattern by separating the initialization from the if
statement condition.

Pattern 2 〈Initialization in Conditions〉

In Pattern 3, we illustrate the pattern logic as control flow. As we can
see on the left side, the call to func_1 is performed only if var_1 is true or
different from 0. The reason is that C evaluates the second argument of the
logical && operator only when the first one evaluates to true. On the right
side of Pattern 3, we use an if statement to make this situation clearer.

Pattern 3 〈Logic as Control Flow〉

We illustrate the pattern conditional operator on the left side of Pattern 4.
In this pattern, we have an assignment that depends on the value of a variable.
We can make this clearer on the right side of Pattern 4 by showing explicitly
that we will change the value of var_1 only if var_2 is equal to 3.

Pattern 4 〈Conditional Operator〉

Investigating Misunderstanding Code Patterns in C 7

In Pattern 5, left side, we show the pattern operator precedence. As we
can see, it is not clear that the second part of the expression is going to be
evaluated first, as operator && has precedence over operator ||. On the right
side, we can make this clearer by adding parentheses.

Pattern 5 〈Operator Precedence〉

We present the pattern comma operator on the left side of Pattern 6. In
this pattern, the statements inside the parentheses are executed in sequential
order. For instance, as we can see, var_2 will have its value summed by one,
followed by the assignment of var_2 to var_1. On the right side of Pattern 6,
we make the order explicit by separating the statements in different lines.

Pattern 6 〈Comma Operator〉

On the left side of Pattern 7, we present the pattern reversed subscript. In
this pattern, we access an integer array (arr_1) and use printf to output the
value stored at the second position of the array. Notice that this is not the
common way of reading values from arrays, but still valid in C. On the right
side of Pattern 7, we show the common way of reading array values used by
the majority of developers.

Pattern 7 〈Reversed Subscript〉

On the left side of Pattern 8, we present the pattern pointer arithmetic.
Notice that there is a pointer (ptr_1) that receives the address of an integer
array (arr_1). Instead of using pointers, we can use an integer variable to
represent the array index, as we show on the right side of Pattern 8.

Pattern 8 〈Pointer Arithmetic〉

8 Flávio Medeiros et al.

In Pattern 9, we present the pattern multiple initializations at the same
line. As we can see on the left side, var_1 and var_2 are both initialized in
Line 1. On the right side, we separate the initializations in different lines of
the source code to make clear that both are initialized. Notice that we may
extend this pattern to other types of statements, not only initializations.

Pattern 9 〈Multiple Initializations at the Same Line〉

On the left side of Pattern 10, we present the pattern assignment as value.
Notice that, in this pattern, we have variable var_1 receiving the result of an
assignment. In this case, we assign 10 to variable var_2, which is the value
of the left expression. As a consequence, the value 10 is going to be assigned
to var_1 too. On the right side of Pattern 10, we separate the assignments in
different lines of the source code.

Pattern 10 〈Assignment as Value〉

In Pattern 11, on the left side, we present the pattern post-increment. As we
can see, first var_1 receives the value of var_2, and then var_2 is incremented.
On the right side of Pattern 11, we make the sequence of executions explicit.
The implicit concept here is that variable var_2 is incremented, but only after
the assignment of its value to var_1.

Pattern 11 〈Post-Increment〉

In Pattern 12, on the left side, we illustrate the pattern pre-increment.
First, var_2 is incremented, and then var_1 receives the value of var_2. On
the right side of Pattern 12, we again make the sequence of executions explicit.
The implicit concept here is that variable var_2 is incremented, but before the
assignment of its value to var_1.

Pattern 12 〈Pre-Increment〉

Investigating Misunderstanding Code Patterns in C 9

In Figure 2, we present a summary of all patterns considered in our study.
Notice that Figure 2 show only the misunderstanding pattern, not presenting
the alternatives to remove each pattern.

Fig. 2: Summary of all patterns considered in our study.

4 Study Settings and Results

In this section, we present the settings of our empirical study, which considers
a corpus of 50 C open-source projects. The goal of our empirical study is
to analyze C projects with respect to evaluating the relevance of our 12
misunderstanding patterns in practice.

4.1 Research Questions

Specifically, we address the following research questions:

– RQ1. What is the frequency of occurrences of misunderstanding patterns
in open-source projects?

– RQ2. Do developers of open-source projects agree that misunderstanding
patterns influence code understanding negatively?

– RQ3. What are the guidelines that open-source projects provide to avoid
misunderstanding code patterns?

– RQ4. Do developers of open-source projects accept pull requests to remove
instances of misunderstanding patterns?

4.2 Study Setup

To answer these research questions, we selected a corpus of 50 C open-source
projects, includingApache,OpenSSL, and Python. Our corpus contains projects

10 Flávio Medeiros et al.

from different domains, such as operating systems, Web servers, text editors,
security libraries, and databases. For the selection of subject projects, we used
GHTorrent (Gousios, 2013) with the goal of identifying active projects by
sorting them based on the number of stars and pull requests on GitHub. In
addition, we considered only projects that use C as the primary language of the
project. That is, we considered column “language” in GHTorrent. The dataset
we used was from March 23, 2018. We list all subject projects in Table 2.

ForRQ1, we conducted a static analysis to count the number of occurrences
of misunderstanding code patterns in the subject projects. We implemented a
Java tool that searches for occurrences of misunderstanding patterns based on
SrcML,8 a tool that generates XML files from source code. Our tool is available
at the supplementary Website with an example showing how our tool operates.

To answer RQ2, we conducted a developer survey to learn about the
relevance of misunderstanding patterns based on the perception of developers.
In Appendix A, we present our survey, which includes 12 questions about the
misunderstanding patterns (one per pattern), and three additional questions
related to the experience of developers, and free text boxes to get additional
misunderstanding pattern candidates from developers. To recruit participants,
we collected relevant information about developers by mining the software
repositories of the projects in our corpus. To select developers to participate in
the survey, we measured code churn metric to select the most active developers
from each project. Then, we arbitrarily selected a number of developers from
the active ones to send emails asking them to fill our survey. Overall, we sent
emails to 701 developers, of which 97 (14%) developers completed the survey.

For RQ3, we studied the guidelines for code contributors provided by 36
projects of our corpus to identify guidelines with respect to misunderstanding
patterns. We searched for guidelines by performing a manual analysis of the
respective project repositories. We considered a project to contain guidelines
for contributors when there is at least one file, or a specific section, focusing on
providing guidelines information. In most projects, we found these guidelines
in the contributing.md file at the root of the repository. To some projects,
we searched the guidelines in the complete software repository.

To answer RQ4, we submitted 35 pull requests, arbitrarily selected from
pattern instances that we found, to the respective software projects suggesting
developers to remove misunderstanding patterns; we counted the number of
patches accepted.

4.3 Results and Discussion

In this section, we present the results regarding our study.

RQ1: What is the frequency of occurrences of misunderstanding patterns in
open-source projects?

To answer this question, we measured the following metrics, as presented
in Table 1: the percentage of projects with occurrences of misunderstanding

8 http://www.srcml.org/

Investigating Misunderstanding Code Patterns in C 11

Table 1: Percentage of projects with occurrences, occurrences per thousand lines of code,
and the frequency category.

Pattern Projects Occurrence/KLOC Category

Multiple Initializations 100% 66.67 highly used
Conditional Operator 98% 12.05 commonly used
Initialization in Conditions 11% 6.41 commonly used
Assignment as Value 94% 3.02 commonly used
Pointer Arithmetic 74% 0.87 little used
Post Increment 78% 0.57 little used
Pre Increment 80% 0.48 little used
Operator Precedence 54% 0.27 little used
Dangling Else 40% 0.09 little used
Logic as Control Flow 50% 0.12 little used
Comma Operator 0.02% 0.003 little used
Reversed Subscript 0% – not used

patterns; and the number of occurrences of the patterns per thousand lines of
code. Then, we classified the patterns into categories based on their frequencies.
For this, we used the following rules: (1) not used: no occurrence found; (2)
little used: at least 1 occurrence to 1.000 occurrences; (3) commonly used:
for patterns with more than 1.000 and less than 10.000 occurrences; and (4)
highly used: more than 10.000 occurrences.

The patterns conditional operator, multiple initializations, and assignment
as value, are used in the majority of open-source projects. We found the pattern
multiple initializations in all projects analyzed in our study. In contrast, we
did not find occurrences of the pattern reversed subscript.

Regarding the number of occurrences per thousand lines of code, the pattern
multiple initializations is definitely the most occurring in practice; we found
more than 66 occurrences of this pattern per thousand lines of code. In a
previous study, Gopstein et al (2018) found that the patterns analyzed in
their work appeared on average once every 23 lines. In our study, the patterns
appeared on average once every 11 lines of code.

We classified the pattern multiple initializations as highly used in practice,
3 patterns as commonly used, 7 patterns as little used, and 1 misunderstanding
pattern as not used in practice (see Table 1). In Figure 3, we present the
numbers of occurrences for the patterns considered in our study. We do not
show pattern reversed subscript, for which we did not find occurrences. In
addition, we omitted pattern comma operator (only 4 occurrences), and patterns
conditional operator andmultiple initializations (high numbers of occurrences).
For instance, we found almost 80K occurrences of patternmultiple initializations,
and conditional operator, of which we found almost 15K occurrences.

To study the current state of existing tools with regards to warn developers
about misunderstanding patterns, we checked which patterns the tools detect.
Existing tools can detect only two patterns. The Gcc compiler, the Clang

12 Flávio Medeiros et al.

Fig. 3: Frequency of occurrences of the patterns.

static analyzer,9 and PVS Studio10 are able to warn developers about the use
of patterns dangling else, and operator precedence. All the other patterns are
not detected by these tools.

Summary

The majority of patterns analyzed in our study (92%) are used in practice
by real developers of open-source C projects. The pattern reversed subscript
does not occur in practice, and the patterns dangling else, comma operator,
and logic as control flow occur only rarely.

RQ2: Do developers of open-source projects agree that misunderstanding
patterns influence code understanding negatively?

As the core of the survey, we asked developers 12 questions (each in Likert
item) to evaluate how positive or negative the influence of using a particular
misunderstanding pattern is. We used the following options as possible answer:
totally positive, positive, neither positive or negative, negative, or totally negative.
At the end of the survey, we added a question about years of experience, and
two open text boxes for additional comments.

Analyzing the answers of 97 software developers, we found that most
developers agree that the use of 6 out of 12 of our patterns (50%) might
cause misunderstandings. In Figure 4, we present the results of the survey.
The patterns comma operator and reversed subscript are the ones that most
developers agree on causing misunderstandings, more than 90% of developers
that filled the survey. This is in line with our results for RQ1, as software
developers do not use these patterns in practice.

For the misunderstanding patterns dangling else, initialization in conditions,
logic as control flow, and operator precedence, our results show that more
than 60% of developers agree that they may influence code understanding
negatively. Three out of these four patterns are classified as little used in RQ1,

9 https://clang-analyzer.llvm.org/
10 https://www.viva64.com/en/pvs-studio/

Investigating Misunderstanding Code Patterns in C 13

Table 2: Overview of the subject projects

Project Domain LOC Dev Commits Guides

Apache Web Server 201 032 36 30 536
Cinder C++ Library 140 731 100 8425 X
Citus Database 65 409 28 1661 X
Cleanflight Controller Firmware 420 295 262 10 391 X
Cmake Build Tool 223 007 570 38 541 X
Cmus Music Player 3730 92 2122 X
Collectd Statistic Library 94 520 320 9852 X
Contiki Operating System 253 667 160 12 325 X
Ctags Tags Implementation 76 874 94 5761
Curl Command Line Tool 108 802 392 22 794 X
Dmd Compiler 77 051 159 18 511 X
Edk2 Firmware 1 493 867 144 23 168 X
FFmpeg Video Tool 868 058 931 89 831 X
FreeRDP Remote Desktop 247 437 201 11 599
Git Code Mirror 174 715 1163 49 935
Glfw Open GL Library 26 154 104 3555 X
Grpc RPC Framework 14 266 306 30 434 X
Hiredis Database 3902 79 591
Irssi Chat Client 53 612 72 5524 X
Jansson JSON Tool 6827 54 847
JohnTheRipper Password Cracker 231 211 86 14 320
Krb5 Security Library 262 323 58 19 304 X
Libpng Image Library 51 987 23 3199
Librdkafka C++ Library 45 127 93 2444 X
Libssh2 SSH Library 27 377 71 1907
Libuv I/O Library 49 634 289 3952 X
Libwebsockets Websocket Library 53 412 152 2380
Lxc Linux Containers 52 770 279 6251 X
Mongo Database 484 903 327 40 354 X
Mpv Video Player 115 403 240 46 085 X
OpenSSL SSL Library 273 284 313 21 259 X
Phpredis Database 12 482 77 1912
Poco C++ Library 317 911 171 4724 X
Premake-core Premake 148 105 77 3057
Python Compiler 288 002 112 561
Qmk_Firmware Controller Firmware 148 160 489 7074 X
Radare2 Reverse Engineering 421 778 444 17 051 X
Reactos Operating System 4 042 406 73 70 684 X
Redis Database 86 358 243 6528 X
RetroArch Libretro API 396 618 236 41 940 X
Riot-os Operating System 152 294 171 3150 X
S2n Security Library 18 664 61 1888 X
Silver Searcher Search Tool 3840 179 1968 X
Statsite Administration Tool 15 083 61 705
Stb C++ Library 14 948 99 1442 X
Swift Corelibs I18n Tool 77 994 220 3252 X
Syslog-ng Log Daemon 89 242 72 6866 X
Systemd System Manager 297 896 894 31 825 X
Tvheadend Streaming Server 126 041 196 9916 X
Weechat Chat Client 167 572 84 8427 X

14 Flávio Medeiros et al.

Table 3: Correlation between perception of misunderstanding and how often the patterns
are used in practice.

Pattern Frequency Category Negative Perception

Comma Operator not used 100%
Reversed Subscript not used 91.75%
Dangling Else little used 71.73%
Logic as Control Flow little used 88.66%
Operator Precedence little used 80.40%
Pointer Arithmetic little used 39.18%
Post Increment little used 31.96%
Pre Increment little used 21.65%
Initialization in Conditions commonly used 76.29%
Conditional Operator commonly used 8.25%
Assignment as Value commonly used 8.25%
Multiple Initializations highly used 12.37%

the exception is pattern initialization in conditions, which is commonly used
in practice by developers of open-source projects.

Fig. 4: Results of the survey.

To investigate the relationship between perception of misunderstanding
(RQ2), and how often the patterns are used in practice (RQ1), we calculate
Spearman’s correlation coefficient. Overall, we found a strong correlation:
rho = 0.93. In Table 3, we show the data regarding the category of occurrences
for each pattern, and the percentage of developers that agreed that the patterns
influence code understanding negatively. As we can see, the majority of patterns
that are not used or little used are perceived as negative by developers. However,
this does not hold for pattern initialization in conditions, which is perceived
as negative by 76.29% of developers, but which is commonly used in practice.

According to the majority of developers, the four patterns, conditional
operator, pointer arithmetic, multiple initializations, assignment as a value, are
neither negative or positive. The patterns post-increment and pre-increment,
most developers state that they do not cause misunderstandings.

Investigating Misunderstanding Code Patterns in C 15

According to the results of Gopstein et al (2017), the misunderstanding
patterns logic as control flow, conditional operator, operator precedence, comma
operator, assignment as value, post-increment, pre-increment, and reversed
subscript, influence code understanding negatively. The results of Gopstein
et al (2017) differ from our results, as we did not find that the patterns
conditional operator, assignment as value, pre-increment, and post-increment,
influence code understanding negatively based on the answers of developers.
Our results are in line with the results of Gopstein et al (2017) with regards to
the pattern pointer arithmetic, in which both studies could not conclude that
this pattern influences code understanding negatively.

Summary

The majority of developers agree that 6 out of 12 patterns (50%)
considered in our study may cause misunderstandings in practice. For
most patterns that developers do not agree to negatively influence
understanding, the majority of developers is neutral.

RQ3: What are the guidelines that open-source projects provide for developers
regarding misunderstanding code patterns?

The majority of open-source projects analyzed in our study (72%) provide
development guidelines for contributors; see column “Guides” in Table 2. We
studied these code guidelines with the goal of identifying rules relevant to
misunderstanding patterns. This way, we learned that the majority of the
guidelines focus mainly on code style issues, and pull request and bug reporting
information.

Still, we found a few guidelines suggesting developers to avoid four patterns
considered in our study. The guidelines of Curl suggest developers to avoid
the pattern initialization in conditions. In fact, we found only 9 occurrences
of this pattern in Curl, while this pattern is very frequent in other projects,
such as OpenSSL, and Reactos. In addition, the Curl project also suggests to
avoid multiple statements in the same line, as is the case in pattern multiple
initializations. However, we found 175 occurrences of this pattern in Curl. The
guidelines of OpenSSL guide developers to avoid using nested if statements
with else branches without brackets, that is, the pattern dangling else. In
OpenSSL, we found no occurrences of this pattern, and 40% of the projects that
we analyzed contain occurrences of this pattern. In Librdkafka, the guidelines
mention explicitly to add parentheses to avoid operator precedence problems,
supporting the pattern operator precedence. However, we found 26 occurrences
of the pattern in the Librdkafka project, which also appears in 54% of the
projects analyzed with similar numbers of occurrences.

Despite the small number of code guidelines targeting misunderstanding
patterns, they do not seem to help avoiding the patterns in practice. Among
the four patterns mentioned in the guidelines, more than 60% of developers
agree that the patterns dangling else, operator precedence, and initializations

16 Flávio Medeiros et al.

in conditions influence code understanding negatively. In contrast, the pattern
multiple initializations is not perceived as negative by most developers.

The guidelines of the other subject projects also suggest code style issues,
but focus more on fine-grained issues, such as the use of spaces for indentation
instead of tabs, and white spaces around operators. The Google, Linux, and
Mozilla guides also focus on fine-grained issues, and not on the patterns
analyzed in our study, except for pattern dangling else, which is mentioned in
Mozilla’s guide. Table 4 presents some guidelines that we found by analyzing
our corpus of open-source projects. In some projects, such as Dmd and Grpc,
the guidelines suggest developers to avoid submitting pull requests that do
not fix issues, such as a bug or warning. In other words, these projects guide
developers to avoid submitting pull requests to change only the code style
(e.g., removing a misunderstanding pattern). It should be done only when
fixing other issues in the code base.

In general, there is not a set of specific development guidelines to improve
understanding in open-source projects. However, some projects claim to address
code understanding by providing guidelines to code style and argue that the
use of a common code style makes the code base easier to review, debug, and
figure out why things go wrong, such as in Curl. In OpenSSL, the guidelines
say that coding style is all about readability and maintainability, which they
check by using available tools, such as the Clang analyzer.

Summary

There are only few guidelines for contributors that are specific
to misunderstanding patterns. Open-source projects argue to tackle
understanding by using a common set of guidelines for code style that
do not focus on patterns, but on fine-grained issues, such as the use of
spaces for indentation instead of tabs, and white spaces around operators.

RQ4: Do developers of open-source projects accept pull requests to remove
misunderstanding code patterns?

We submitted 35 pull requests, arbitrarily selected, to open-source projects,
of which we received responses to 26 pull requests. We ignored 5 of our own
pull requests because developers mentioned that they were from third-party
dependencies or deprecated code. We did not submit pull requests for projects
involved in the survey to avoid bias. Notice that it could influence developers
to accept or reject pull requests after seen the patterns in the survey. As we
discussed in the subject selection (Section 4.2), we selected active projects by
sorting C projects based on the number of pull requests with the purpose of
receiving fast feedback from developers.

We submitted the 35 pull requests manually. So, this is the first reason for
why we were not able to submit hundreds of pull requests. In addition, and
more importantly, developers of open-source projects do not seem to like to
receive pull requests that change only style without fixing problems. Thus, as

Investigating Misunderstanding Code Patterns in C 17

Table 4: The guidelines that open-source projects provide for contributors.

Guideline Projects #

Use C99 style for comments Collectd, Krb5, Libuv,
Librdkafka, Lxc, Mpv,
OpenSSL, RetroArch, s2n,
and Weechat

10

Use spaces for indentation Collectd, Curl, Edk2, Krb5,
Libuv, Mapserver, Mongo,
OpenSSL, s2n, and Weechat

9

Use consistent names for variables and
functions

CleanFlight, Curl, FFmpeg,
Librdkafka, Lxc, Libuv, Poco,
OpenSSL, and Weechat

9

Use bracket for every block even with a single
statement

Contiki, Cmus, Edk2, Lxc,
Micropython, and Radare2

6

Do not write long lines with more than 79
columns

Curl, Cmus, Krb5, OpenSSL,
and Weechat

5

Use a tool to check code style, such as Clang Curl, Mapserver, and Mongo 4
No brackets for blocks with one statement Curl, Krb5, Librdkafka, and

OpenSSL
4

Avoid warnings in all major platforms Curl, OpenSSL, and Python 3
Use space around binary operators Curl, Mpv, and OpenSSL 3
Define macros, typedefs and enums in
uppercase

Openssl, Linux 2

Keep function return type at a single line
alone

Krb5, Mruby 2

Do not write long functions CleanFlight, and OpenSSL 2
Open bracket at next line of function
definition

Curl, and Krb5 2

Use C89 style for comments Mruby, and Poco 2
Always use parentheses in evaluations Weechat 1
Avoid global variables CleanFlight 1
Avoid checking platforms and operating
systems in #ifdefs

Curl 1

Do not change auto generated code Grpc 1
Do not check conditions (true, false, or null) Curl 1
Do not include assignments in conditions Curl 1
Do not use space after unary operators OpenSSL 1
Do not use space before parentheses Curl 1
Do not use spaces at the end of lines Krb5 1
Else branch starts at the next line of a closing
bracket

Curl 1

Nested compound statements must have
brackets

OpenSSL 1

Never write multiple statements on the same
line

Curl 1

Opening bracket at the same line of the
statement

Curl 1

Use column alignment when breaking
statements in multiple lines

Curl 1

Use one space for preprocessor directives
indentation

Openssl 1

Use one white space after command keywords Krb5 1
Use brackets to make operator precedence
explicit

Librdkafka 1

Use tabs for indentation Radare2 1

18 Flávio Medeiros et al.

our pull request study was not bringing benefits to the projects, we decided
to avoid submitting more pull requests.

Before submitting pull requests, we studied the guidelines of the project,
when available, to avoid introducing code style issues. For the projects that
we submitted pull request to, John the Ripper and FreeRDP do not provide
guidelines. According to our experience, developers tend to reject patches
because of very small code style problems (Medeiros et al, 2013, 2015b, 2018a).
However, developers accepted 8 (38%) out of 21 pull requests considered in
our study that we received feedback for. We submitted the 8 pull requests
accepted to the following projects: Curl, Grpc, John the Ripper, Map Ready,
Mruby, Poco, RetroArch, and Systemd.

Specifically, the developers of the 8 open-source projects accepted pull
requests to remove the following misunderstanding patterns: 2 pull requests
to remove dangling else, 2 pull requests to remove operator precedence, 2 pull
requests to remove conditional operator, 1 pull request to remove assignment
as value, and 1 pull request to remove post-increment. The patterns dangling
else and operator precedence are perceived as negative by developers according
to the results of our survey. However, developers also accepted pull requests
for the patterns conditional operator, assignment as value, and post-increment,
which are not perceived as negative according to the survey. Notice that we
did not submit pull requests to remove the pattern reversed subscript because
we did not find occurrences of this patterns in practice.

To compare the acceptance rate of our study to the acceptance rate of pull
requests submitted by developers, we analyzed the number of pull requests
accepted and rejected for the projects that we submitted pull requests. Overall,
the acceptance rate of the open-source projects considering all pull requests
closed, on average, is 29%, lower than the acceptance rate of our study (38%).
The details about this study is available at the supplementary Website.

Developers rejected 13 (62%) out of 21 pull requests that we submitted to
open-source projects for which we received feedback. In most cases, developers
said that the original version of the code is also readable, that the pattern
is commonly used in practice, or that they prefer to handle such issues by
following standard guidelines, such as the Google Code Style guides. In Table 5,
we present the patches rejected and the reasons raised by developers for
rejection.

In some projects, such as Dmd and Grpc, the guidelines suggest developers
to avoid submitting pull requests that do not fix issues, such as a bug or
warning. In other words, these projects guide developers to avoid submitting
pull requests to change only the code style. It should be done only when fixing
other issues in the code base. This might be a possible reason for the high
percentage of rejected patches. It is important to note that developers rejected
patches even to remove patterns that more than 60% of software developers
agree on to influence code understanding negatively, such as the pull requests
submitted to Irssi, Dmd, and Libgit2.

We also submitted pull requests to projects suggesting developers to change
the guidelines. Here, we submitted 5 pull requests and received feedback from

Investigating Misunderstanding Code Patterns in C 19

Table 5: Patches rejected by developers.

Project Pattern Reason exposed by developers

Dmd Conditional Operator (P4) Chaining ternary expressions is a
common pattern in some code bases.

FreeRDP Init. in Condition (P2) It is not really necessary and more or less
preference.

Irssi Dangling Else (P1) All style-related changes handled in a
specific pull request.

Libgit2 Operator Precedence (P5) I don’t think this is much more readable.
I definitely prefer the brevity.

Open TX Assign. as Value (P10) The original code doesn’t seem
unreadable.

Ossec Hids Cond. Operator (P4) Both versions seem easy enough to read.
Machine Kit Operator Precedence (P5) That is a very commonly used C

assignments.
MapReady Pre Increment (P11) I prefer the ++ style of incrementing

myself, it’s pretty standard C at this
point.

Mpv Operator Precedence (P5) The short-circuiting behavior is already
pretty common knowledge.

Radare Logic as Control Flow (P3) It is clear and valid for their coding style.

4 pull requests. Many developers agreed with our guidelines by making a
number of positive comments, saying that they agree with most guidelines,
that the guidelines may improve maintainability, and that the guidelines help
to avoid compiler warnings. For instance, a developer from project Cleanflight
mentioned that “[he] fully agrees with the first two patterns: dangling else, and
logic as control flow ”.

We also received negative feedback for some misunderstanding patterns,
including the Cleanflight project, such as for the pattern operator precedence,
in which developers mentioned that it is better to use parentheses only when
they are required, such as the sentences of a developer saying that “brackets are
there to alter the normal operator precedence, and when seeing a bracket you
should be able to assume that the operator precedence has been altered. Extra
brackets make the code less readable and less understandable”. However, we
also received opposite opinions at the same pull request, such as a developers
from Cleanflight mentioning that “[he] prefers to have parenthesis always, to
[him] it makes simpler to read ”.

Furthermore, some developers mentioned that the project follows theGoogle
Code guides, and that the contributor’s guidelines are not the best place to
include an exhaustive list of misunderstanding patterns. A developer from the
Libuv project mentioned that “[he] dislikes the direction this pull request is
suggesting. [He does not] think [that] an exhaustive list of good coding practices
is really appropriate for a file like contributing.md”. Overall, three pull requests
were rejected, and one is under review.

20 Flávio Medeiros et al.

Summary

Developers accepted 8 out of 21 pull requests (38%) for which we received
feedback. For the others, developers stated mostly that the current version
of the code is fine and they resist to change the code, as it is working
without errors.

4.4 Threats to Validity

Next, we discuss potential threats to validity of our study, considering the
opinion of developers, occurrences of misunderstanding patterns in practice,
analysis of contributors guidelines, and pull request submission.

Regarding the occurrences of patterns in practice, we used SrcML,11 which
uses heuristics that may fail in source code with undisciplined preprocessor
directives (Liebig et al, 2011). To minimize this threat, we did not include
projects with high numbers of undisciplined preprocessor directives (Liebig
et al, 2011), and the majority of projects included in our study do not use
the C preprocessor heavily. To minimize this threat, we performed a small
experiment to test our tool. We detected 17 patterns manually, from 6 projects.
Initially, the tool was able to detect 13 patterns. In addition, we included
50 patterns detected by the tool published at the study of Gopstein et al
(2017), and our tool detected 44 patterns. When performing this experiment,
we detected some problems in the implementation and fixed the issues. The
current version of our tool is able to detect all 67 patterns considered in the
experiment. It is important to notice that the numbers reported in this article
have been generated by using the current version of our tool.

We found that the majority of developers (52%) have less than five years
of experience with C. A couple of developers sent us additional comments
saying that “experienced programmers should be able to understand all of the
given code patterns immediately” and “if a programmer has any difficulties to
understand even a single of the given patterns, he probably has only a couple
of years of experience with C”. To address this threat, we analyzed the results
of the survey by separating the developers into two different groups: (1) less
than five years of experience; and (2) developers with more than five years of
experience. Still, we found that the results are very similar, minimizing this
threat to validity.

In our pull requests, we submitted modifications that do not add new
functionalities, nor fix bugs or warnings. As many projects guide developers
to avoid submitting pull requests addressing code style issues only, we might
have a bias in our study. To understand this threat, we collected information
about the reasons that made developers reject our pull requests, by discussing
with developers on the pull request via the GitHub infrastructure.

11 http://www.srcml.org/

Investigating Misunderstanding Code Patterns in C 21

5 Guidance for Practitioners

Our study has several implications for practitioners that use the C language
in practice as well as for researchers interested in program comprehension, as
we discuss next.

We found that the most developers (at least 60%) do not recommend
the use of the following patterns in practice: dangling else, initialization in
conditions, logic as control flow, operator precedence, comma operator, and
reversed subscript. Thus, it may be advisable to avoid the use of these patterns.
Furthermore, it could be useful to include information about them in the
code guidelines of open-source projects, as we already found for four patterns:
Curl suggests developers to avoid initialization in conditions, and multiple
initializations; OpenSSL, and Reactos guide developers to avoid dangling else;
and Librdkafka mentions explicitly to avoid the pattern operator precedence.
Our study provides a first step to develop guidelines grounded in research data
and taking into account developer preferences and acceptance.

We found many open-source projects guiding developers to avoid pull
requests that only make stylistic improvements of source code without fixing
bugs or warnings. It would be interesting to include tools to check certain
patterns in new pull requests, so that we could avoid new occurrences of these
misunderstanding patterns. Furthermore, there might be a need to develop
tools, integrated with the current IDE used by developers of C open-source
projects, to avoid developers to add new occurrences of misunderstanding
patterns as well as to remove existing occurrences. External tools that detect
guideline violations automatically (such as misunderstanding patterns) and
propose fixes (e.g., refactorings) can likely have a larger impact on practice,
and may simplify the work of developers. Refactoring tools may also suggest
to remove misunderstanding patterns when developers are fixing bugs and
warnings.

Researchers might use the results of our study to make their tools more
attractive to developers by taking their perspective and needs into account. As
we discussed in previous work (Medeiros et al, 2015a), developers are not aware
of research tools. Thus, researchers should not only take the perception of
developers into account, but they also need to interact somehow with practice,
through pull requests to open-source projects, for example, to make developers
aware of their tools. Moreover, our results motivate further research to study
automated refactorings to remove misunderstandings.

6 Related Work

There has been research on misunderstanding patterns since at least the late
sixties. Dijkstra published a study discussing the problems of using go to
statements (Dijkstra, 1968). According to his study, go to statements should
be abolished from all high-level programming languages, as it becomes terribly
hard to understand the sequence of execution of programs in the presence of

22 Flávio Medeiros et al.

go to statements. A follow-up study discusses several programming language
taboos, including the go to statement, and agreed with the problems of having
explicit control transfers using go to statements (Marshall and Webber, 2000).
In a recent study, Nagappan et al (2015) have studied the use of go to
statements empirically, and the results show that developers are still using
these statements, but developers limit themselves to use go to in certain
constructs, avoiding unrestricted use as discussed by Dijkstra (1968).

Researchers also discussed the problems of other patterns and language
constructs, such as global mutable state. For example, researchers argued
to avoid global variables and use local ones to guarantee that variables are
starting from known values in every path of execution. Marshall and Webber
(2000) mention that the standard advice to notice developers today is that
global variables are bad and you should not use it. Wulf and Shaw (1973)
claimed that global variables are a major contributing factor in programs which
are difficult to understand, and should be abolition from modern programming
languages. Another example are magic numbers, which are constants used in
the code, such as array sizes, character positions, and so on (Kernighan and
Pike, 1999). According to researchers, every magic number should have a name
for its own to ease understanding.

A topic frequently related to understanding is the discipline of preprocessor
directives. Several studies criticized the use of the C preprocessor regarding its
lack of separation of concerns, and code obfuscation, which make maintenance,
and program comprehension difficult. Spencer and Collyer (1992) argue that
developers normally tend to use the preprocessor to workaround problems
instead of dealing with portability in the right way, that is, planning in advance
and structuring the code accordingly.

Ernst et al (2002) presented an empirical study on the C preprocessor
by analyzing 26 packages comprising 1.4 MLOC. They found that most C
preprocessor usage follows simple patterns. The researchers also discussed
about the undisciplined use of the C preprocessor and its problems, such
as that it makes the program more difficult to understand. Baxter (1992)
proposed DMS, a source-code transformation tool for C and C++. In a more
recent work (Baxter and Mehlich, 2001), the authors used the DMS tool
and emphasized the problem of using unstructured directives. Garrido and
Johnson (2003) developed the CRefactory, a refactoring tool for C to remove
certain patterns of preprocessor usage to minimize the problems related to
code understanding. Liebig et al (2011) analyzed 40 systems and suggested
that developers can introduce subtle syntax errors when using undisciplined
directives. The authors found that the undisciplined use of the preprocessor
corresponds to 15.6% of the total number of directives.

Developers sometimes refer to the excessive use of preprocessor directives
as the “#ifdef hell” (Lohmann et al, 2006). A specific practice that has
been discussed is the undisciplined use of preprocessor directives, that is,
conditional compilation directives that do not align with the syntactic code
structure. Undisciplined use of preprocessor directives has been related to
error proneness, as we discussed in our previous studies (Kästner et al, 2011;

Investigating Misunderstanding Code Patterns in C 23

Medeiros et al, 2013, 2016, 2018a), decrease of code understanding and code
maintainability (Baxter and Mehlich, 2001; Ernst et al, 2002), and limitations
in tool support, as discussed in a previous study (Padioleau, 2009).

In our previous work, we performed some studies by using different methods,
such as surveys (Medeiros et al, 2015a, 2018a), interviews (Medeiros et al,
2015a), repository mining (Medeiros et al, 2013, 2016, 2018a), and controlled
experiments (Feigenspan et al, 2013), to analyze the problems of undisciplined
preprocessor use taking the perception of developers into account. Here, we
use a similar approach but considering other aspects of the C language.

Gopstein et al (2017) presented a set of misunderstanding patterns of C
programs. They performed two controlled experiments, on a sample composed
largely by students, that showed that the set of patterns analyzed increased
significantly the misunderstanding rates. They considered patterns such as
pre-increment, if ternary initializations, and macro operator precedence. We
included 10 misunderstanding patterns from Gopstein et al (2017) in our study
with the goal of evaluating them in a real-world setting, involving developers
from open-source projects. In a recent study, Gopstein et al (2018) used a
corpus of 14 open-source projects to measure the prevalence misunderstanding
patterns. Their results showed that the patterns analyzed appear on average
once every 23 lines. In addition, their study showed that there is a strong
correlation between misunderstanding patterns and commits to fix bugs. In
our study, we found an occurrence of misunderstanding pattern every 11 lines
of code on average.

Fowler et al (1999) defined a set of bad code smells, which are structures
in the code that we can refactor to improve the design of existing systems.
The work of Fowler et al. focuses more on high-level design issues, such as
architectural code smells, while our work considers more fine-grained patterns.
Other researchers used obfuscation techniques to make the source code more
difficult to understand with the purpose of protecting intellectual properties
by hindering reverse engineering attacks. Herzberg and Pinter (1987) present
protocols that enable software protection, without causing substantial overhead
in distribution and maintenance, based on DES and RSA. Collberg et al (1997)
reviewed various techniques to obfuscate code and proposed a code obfuscation
strategy based on obfuscating transformations.

To summarize, there are several studies discussing the problems and the
importance of code understanding for software evolution and maintenance.
Here, we complement previous work by evaluating a set of misunderstanding
patterns by taking the perception of real developers into account.

7 Concluding Remarks

In this article, we discuss a mixed-method study on misunderstanding patterns,
including repository mining and analysis, and a survey with developers. We
considered 50 C open-source projects and showed that the majority of the

24 Flávio Medeiros et al.

misunderstanding patterns, taken from a previous study (Gopstein et al, 2017),
are commonly used in practice.

In our survey, we found that developers agreed that the use of 6 out of the
12 patterns influence code understanding negatively. For the other 6 patterns,
most developers are indifferent.

By analyzing the guidelines of the 50 subject projects, we found that
most guidelines do not address code understanding. They focus rather on
information about how to structure pull requests, which tools developers should
use, and how to report bugs. Furthermore, the majority of the guidelines
regarding code style address fine-grained issues, such as the use of spaces for
indentation instead of tabs, use of spaces before and after operators, and not
to write long lines with more than 80 columns.

To understand the relevance of misunderstanding patterns, we submitted
35 pull requests to remove misunderstanding patterns in open-source projects,
for which we received feedback for 21 pull requests, and developers accepted
8 (38%) pull requests. Despite this low acceptance rate, our results suggest
that developers tend not to accept pull requests that do not fix errors and
warnings, and developers tend to resist to change source code that is working.

In future work, we are planing to extend our study to other programming
languages with the purpose of identifying new misunderstanding patterns that
developers should avoid in practice. Furthermore, we intend to define and
evaluate refactorings to remove misunderstanding patterns automatically.

Acknowledgement

We would like to thank Dan Gopstein for the useful feedback regarding our
study. Apel’s work has been supported by the German Research Foundation
(AP 206/6). This work was funded by CNPq (308380/2016-9, 477943/2013-6,
460883/2014-3, 465614/2014-0, 306610/2013-2, 307190/2015-3, and also CNPq
409335/2016-9), FAPEAL (PPG 14/2016), and CAPES grants (175956 and
117875).

References

Baxter I, Mehlich M (2001) Preprocessor conditional removal by simple
partial evaluation. In: Procedings of the Working Conference on Reverse
Engineering, IEEE, WCRE, pp 281–290

Baxter ID (1992) Design maintenance systems. Commun ACM 35(4):73–89
Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code reviews in
open-source projects: Which problems do they fix? In: Proceedings of the
Working Conference on Mining Software Repositories, ACM, pp 202–211

Bland M (2014) Finding more than one worm in the apple. Commun ACM
57(7):58–64

Burke D (1995) All Circuits are Busy Now: The 1990 AT&T Long Distance
Network Collapse. California Polytechnic State University

Investigating Misunderstanding Code Patterns in C 25

Buse RP, Weimer WR (2008) A metric for software readability. In: Proceedings
of the International Symposium on Software Testing and Analysis, ACM,
pp 121–130

Cannon LW, Elliott RA, Kirchhoff LW, Miller JH, Milner JM, Mitze RW,
Schan EP, Whittington NO, Spencer H, Brader M, Cannon LW, Elliott RA,
Kirchhoff LW, Miller JH, Milner JM, Mitze RW, Schan EP, Whittington NO,
Spencer H, Brader M (2000) Recommended C style and coding standards

Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating
transformations. Technical Report 148, Department of Computer Science,
University of Auckland

Creswell JW, Clark VLP (2011) Designing and Conducting Mixed Methods
Research. SAGE Publications

Darnell PA, Margolis PE (1996) C: A Software Engineering Approach.
Springer

Dijkstra EW (1968) Go to statement considered harmful. Commun ACM
11(3):147–148

Dowson M (1997) The Ariane 5 software failure. SIGSOFT Softw Eng Notes
22(2):84–93

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting Empirical
Methods for Software Engineering Research, Springer, pp 285–311

Elgot CC (1976) Structured programming with and without go to statements.
IEEE Transactions on Software Engineering SE-2(1):41–54

Ernst M, Badros G, Notkin D (2002) An empirical analysis of C preprocessor
use. IEEE Transactions on Software Engineering 28(12):1146–1170

Feigenspan J, Kästner C, Apel S, Liebig J, Schulze M, Dachselt R,
Papendieck M, Leich T, Saake G (2013) Do background colors improve
program comprehension in the #ifdef hell? Empirical Software Engineering
18(4):699–745

Fowler M, Beck K, Brant J, Opdyke W, Roberts D, Gamma E (1999)
Refactoring: Improving the Design of Existing Code. Addison-Wesley

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley

Garrido A, Johnson R (2003) Refactoring C with conditional compilation. In:
Proceedings of the IEEE International Conference on Automated Software
Engineering, IEEE, pp 323–326

Glass RL (2001) Frequently forgotten fundamental facts about software
engineering. IEEE Softw 18(3):112–111

Gopstein D, Iannacone J, Yan Y, DeLong L, Zhuang Y, Yeh MKC, Cappos J
(2017) Understanding misunderstandings in source code. In: Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, ACM,
ESEC/FSE 2017, pp 129–139

Gopstein D, Zhou H, Frankl P, Cappos J (2018) Prevalence of confusing code
in software projects: Atoms of confusion in the wild. In: Proceedings of the
Working Conference on Mining Software Repositories, ACM

Gousios G (2013) The GHTorent dataset and tool suite. In: Proceedings of
the Working Conference on Mining Software Repositories, IEEE Press, pp

26 Flávio Medeiros et al.

233–236
Herzberg A, Pinter SS (1987) Public protection of software. ACM Trans
Comput Syst 5(4):371–393

ISO/IEC/IEEE (2006) Iso/iec/ieee international standard for software
engineering - software life cycle processes - maintenance. Std 14764-2006
pp 1–58

Jha MM, Vilardell RMF, Narayan J (2016) Scaling agile scrum software
development: Providing agility and quality to platform development by
reducing time to market. In: 2016 IEEE 11th International Conference on
Global Software Engineering (ICGSE), pp 84–88

Kästner C, Giarrusso P, Rendel T, Erdweg S, Ostermann K, Berger T (2011)
Variability-aware parsing in the presence of lexical macros and conditional
compilation. In: Proceedings of the Object-Oriented Programming Systems
Languages and Applications, ACM, pp 805–824

Kernighan BW, Pike R (1999) The Practice of Programming. Addison-Wesley
Liebig J, Kästner C, Apel S (2011) Analyzing the discipline of preprocessor
annotations in 30 million lines of C code. In: Proceedings of the International
Conference on Aspect-Oriented Software Development, ACM, pp 191–202

Lohmann D, Scheler F, Tartler R, Spinczyk O, Schröder-Preikschat W (2006)
A quantitative analysis of aspects in the eCos kernel. In: Proceedings of the
European Conference on Computer Systems, ACM, pp 191–204

Malaquias R, Ribeiro M, Bonifácio R, Monteiro E, Medeiros F, Garcia A,
Gheyi R (2017) The discipline of preprocessor-based annotations does #ifdef
TAG N’T #endif matter. In: Proceedings of the International Conference
on Program Comprehension, IEEE Press, pp 297–307

Marshall L, Webber J (2000) Gotos considered harmful and other programmers
taboos. In: Proceedings of the Workshop of the Psychology of Programming
Interest Group, PPIG, pp 171–180

Medeiros F, Ribeiro M, Gheyi R (2013) Investigating preprocessor-based
syntax errors. In: Proceedings of the International Conference on Generative
Programming: Concepts & Experiences, ACM, pp 75–84

Medeiros F, Kästner C, Ribeiro M, Nadi S, Gheyi R (2015a) The
Love/Hate Relationship with the C Preprocessor: An Interview Study.
In: European Conference on Object-Oriented Programming (ECOOP),
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Leibniz International
Proceedings in Informatics (LIPIcs), vol 37, pp 495–518

Medeiros F, Rodrigues I, Ribeiro M, Teixeira L, Gheyi R (2015b) An empirical
study on configuration-related issues: Investigating undeclared and unused
identifiers. In: Proceedings of the ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences, ACM, pp 35–44

Medeiros F, Kästner C, Ribeiro M, Gheyi R, Apel S (2016) A comparison
of 10 sampling algorithms for configurable systems. In: Proceedings of the
International Conference on Software Engineering, ACM, pp 643–654

Medeiros F, Ribeiro M, Gheyi R, Apel S, Kastner C, Ferreira B, Carvalho L,
Fonseca B (2018a) Discipline matters: Refactoring of preprocessor directives
in the #ifdef hell. IEEE Transactions on Software Engineering 44(5):453–469

Investigating Misunderstanding Code Patterns in C 27

Medeiros F, Silva G, Amaral G, Apel S, Kästner C, Ribeiro M, Gheyi R
(2018b) Investigating Misunderstanding Code Patterns in C Open-Source
Software Projects (Replication Package). DOI 10.5281/zenodo.1461534,
URL https://doi.org/10.5281/zenodo.1461534

Nagappan M, Robbes R, Kamei Y, Tanter E, McIntosh S, Mockus A,
Hassan AE (2015) An empirical study of goto in C code from GitHub
repositories. In: Proceedings of the Joint Meeting on Foundations of Software
Engineering, ACM, New York, NY, USA, pp 404–414

Padioleau Y (2009) Parsing C/C++ code without pre-processing. In:
Proceedings of the International Conference on Compiler Construction,
Springer-Verlag, pp 109–125

Pahal A, Chillar RS (2017) Code readability: A review of metrics for
software quality. International Journal of Computer Trends and Technology
46(1):1–58

Rigby PC, German DM, Storey MA (2008) Open source software peer review
practices: A case study of the Apache server. In: Proceedings of the
International Conference on Software Engineering, ACM, pp 541–550

Schulze S, Liebig J, Siegmund J, Apel S (2013) Does the discipline of
preprocessor annotations matter? a controlled experiment. In: Proceedings
of the International Conference on Generative Programming: Concepts and
Experiences, ACM, pp 65–74

Scott ML (2000) Programming Language Pragmatics. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA

Spencer H, Collyer G (1992) #ifdef considered harmful, or portability
experience with C News. In: USENIX Summer Technical Conference, pp
185–197

Stamelos I, Angelis L, Oikonomou A, Bleris GL (2002) Code quality analysis in
open source software development. Information Systems Journal 12(1):43–60

Wulf W, Shaw M (1973) Global variable considered harmful. SIGPLAN Not
8(2):28–34

Appendix A Survey with Developers

We are investigating specific C constructions (code patterns) in the source
code. This survey presents some code patterns and ask you about their influence
in terms of understanding the source code. For each question we will present
the code patterns at the Left-Hand Side (LHS) and an alternative on the
Right-Hand Side (RHS).

You should be able to answer our survey in around 10-15 minutes. We will
use your answers to understand the practical use of code patterns and develop
supporting tools. We really appreciate your help. Thanks!

28 Flávio Medeiros et al.

Investigating Misunderstanding Code Patterns in C 29

30 Flávio Medeiros et al.

Investigating Misunderstanding Code Patterns in C 31

32 Flávio Medeiros et al.

Investigating Misunderstanding Code Patterns in C 33

34 Flávio Medeiros et al.

