
Colligens: A Tool to Support the Development of
Preprocessor-based Software Product Lines in C

Flávio Medeiros1 , Thiago Lima2 , Francisco Dalton2 , Márcio Ribeiro2 ,
Rohit Gheyi1 , Baldoino Fonseca2

1Departamento de Sistemas e Computação
Universidade Federal de Campina Grande (UFCG) – Campina Grande – Brasil

2Instituto de Computação
Universidade Federal de Alagoas (UFAL) – Maceió – Brasil

flaviomedeiros@copin.ufcg.edu.br, rohit@dsc.ufcg.edu.br

{marcio, teol, fdbd, baldoino}@ic.ufal.br

Abstract. A Software Product Line (SPL) is a set of products developed from
reusable assets. These products share a common platform and we can cus-
tomize them for specific customers. In an SPL, developers use the concept of
features. They are the semantic units by which we can differentiate products. In
C programming, we can implement features by mapping them to preprocessor
directives, such as #ifdef and #endif. In this context, although there are
tools to deal with C preprocessors and SPLs, they are not integrated, which hin-
ders their usage in product line development. In this paper, we propose a tool
that provides an integrated environment based on the Eclipse platform to sup-
port the development of preprocessor-based SPLs in C. Thus, developers can
create feature models, see SPL metrics, and generate SPL products automati-
cally after checking for the absence of invalid products.

1. Introduction
A Software Product Line (SPL) consists of software systems that share common features
that satisfy the needs of a specific market segment [Clements and Northrop 2001]. In this
context, features are the semantic units by which we can differentiate programs in an
SPL [Trujillo et al. 2006]. In C programming, developers may use the C preprocessor to
implement features by mapping them to preprocessor directives, such as #ifdef and
#endif [Thüm et al. 2012].

Although there are tools to deal with C preprocessors and SPLs, they are not
integrated, which hinders their usage in product line development. For example, Fea-
tureIDE [Thüm et al. 2012] enables developers to create and gather a feature model to
their software projects in some languages like Java, but there is no mapping between this
feature model and C preprocessors. As another example: despite recognizing preproces-
sors, C compilers such as GCC do not check all products to identify potential errors before
generating them. Last but not least, TypeChef [Kästner et al. 2011], a variability-aware
parser for C, outputs the results in console, making the tasks of locating and analyzing
errors difficult. Therefore, to have the benefits of each tool, developers may need to write
scripts to use the output of a tool as input of another and use different environments,
technologies and languages, increasing their effort.

To minimize these problems and provide an environment containing the function-
alities of these tools, we present in this paper Colligens,1 an Eclipse plug-in tool to support
C developers during preprocessor-based SPL implementations. When using our tool, de-
velopers can create feature models and map them to C preprocessor directives, check
invalid products before generating them, reach erroneous code points by just clicking on
the tool views, generate valid products according to both feature model and C language
rules (with respect to syntax and type), analyze SPL metrics, and so forth.

We applied our tool to real software families that contain feature constraints de-
fined in the configure files. In particular, we use the libssh project,2 a multiplatform C
library that implements the Secure Shell (SSH) protocol on client and server side, and
libpng, the official PNG reference library3. Using the Colligens tool, we find syntax er-
rors that the project developers confirmed as bugs.

2. Motivating Example
To implement SPLs and software families in C, developers may use preprocessors to
implement features. For example, Figure 1 presents a real code snippet from the libssh
software family that verifies signatures using the cryptographic libraries libgcrypt and
libcrypto.

...
static int sig_verify(SSH_SESSION *session, PUBKEY *pubkey, SIGNATURE *signature){
 // Code here..
 switch (pubkey->type){
 case TYPE_DSS:
 #ifdef HAVE_LIBGCRYPT
 // Code here..
 if (gcry_err_code (valid) != GPG_ERR_BAD_SIGNATURE){
 ssh_set_error(2, "DSA error : %s", gcry_strerror(valid));
 #elif defined (HAVE_LIBCRYPTO)
 // Code here..
 if (valid == -1){
 ssh_set_error(session, 2, "DSA error : %s", ERR_get_error());
 #endif
 return -1;
 }
 ssh_set_error(session, 2, "Invalid DSA signature");
 return -1;
 // Other case options
 }
 return -1;
}
...

510.

524.
525.
526.

532.
533.
534.

539.
540.
541.
542.
543.
544.
545.

571.
572.
573.

...

...

...

...

...

...

Figure 1. Code Fragment from the libssh project.

We may use TypeChef as illustrated in Figure 2 to detect errors. It iden-
tifies a syntax error, i.e., a missing bracket, in line 11500 when configuration (not
HAVE LIBGCRYPT and not HAVE LIBCRYPTO) is set. However, in this scenario we
face two problems. Firstly, the line number, pointed by TypeChef, that contains the error
does not correspond to the original code (line 543 of dh.c file). Thus, developers need to
spend additional time to manually identify the actual problematic line. Also, according
to the configure file of the libssh project, the configuration where TypeChef identified the

1https://sites.google.com/a/ic.ufal.br/colligens/
2http://www.libssh.org/
3http://www.libpng.org/

error is not valid (not HAVE LIBGCRYPT and not HAVE LIBCRYPTO). In particular,
one of the features must be always enabled. Again, developers would spend extra effort
to investigate an error that actually does not exist. Notice that this kind of error does not
arise in case we integrate a feature model to our project, since we can make TypeChef
aware of such a feature model. Further, the Colligens tool can check problems like this
one in several files.

MacBook-Pro: Typechef Flavio$ java -Xmx1024m -jar lib/TypeChef-0.3.5.jar -h platform.h --parse libssh/dh.c
parsing.
(def(HAVE_LIBGCRYPT) | def(HAVE_LIBCRYPTO)) succeeded
(!def(HAVE_LIBGCRYPT) & !def(HAVE_LIBCRYPTO)) failed: end of input expected at file libssh/dh.c:11500:12 (List())

Figure 2. Analyzing a libssh file with TypeChef using a command line tool.

Besides, we execute TypeChef using command line tools. To minimize these prob-
lems, we present a tool that not only integrates other tools, i.e., FeatureIDE and TypeChef,
but also provides new functionalities such as mapping features and preprocessor direc-
tives, feature renaming, and SPL metrics.

3. A Tool to Support the Development of Software Product Lines in C

In this section, we present how our tool deals with the aforementioned problems. Then,
we describe its architecture in Section 3.1, and the main functionalities in Section 3.2.

Colligens is an Eclipse plug-in distributed under the GNU General Public License
(GPL) that provides support for the development of preprocessor-based SPLs using the
C language. It integrates the TypeChef and FeatureIDE tools on the Eclipse platform.
When using our tool, developers can identify invalid products (regarding syntax and type
errors) without preprocessing the source code and generating binary code. In Figure 3,
we present a view of the tool showing a type error that is present in all products with the
feature HAVE LIBGCRYPT. This view shows the file that contains the problem, so that
developers can reach the original erroneous code by just clicking on the tool view.

In addition, Colligens also uses a feature model editor as we can see on the right
hand side of Figure 3. Using the libssh feature model, our tool do not identify the syntax
error in the invalid configuration that we mention in Section 2 (not HAVE LIBGCRYPT
and not HAVE LIBCRYPTO). In this context, the tool checks the feature model constraints
and TypeChef analyzes only valid configurations. Also, since the tool maps features to
preprocessor directives, the renaming of a feature implies modifications on the source
code, keeping the feature model and the source code consistent, which might reduce de-
velopers effort.

Even after checking the presence of errors and invalid products, we can force the
Colligens tool to generate the SPL products. The generation of invalid products can ease
the identification of problems, since the developers can focus on a single product, which
contains no preprocessor directives on the source code. In Figure 4, we depict a view that
lists the invalid products.

Figure 3. Colligens view to show syntax and type errors found by TypeChef, and
the partial feature model of the libssh project.

Figure 4. Colligens view to list invalid products.

Moreover, Colligens provides a view that shows metrics about the SPL (see Figure
5). Thus, developers can view data, such as the number of features, number of products,
number of files, number of files with preprocessor directives, average number of directives
per file, and the Lines of Code (LOC). The tool executes its functionalities on the Eclipse
development environment without the need of additional scripts or command line tools.
Hence, SPL developers may not need to perform tasks manually.

Figure 5. Colligens view to show SPL metrics information.

3.1. Architecture

In this section, we present the architecture of our tool. It is an Eclipse plug-in that inte-
grates the TypeChef and FeatureIDE tools. As we can see in Figure 6, the tool architecture
is composed by the Eclipse infrastructure, Eclipse C/C++ Development Tooling (CDT)
plug-in, FeatureIDE, TypeChef, and the modules that we implemented using the Model-
View-Controller (MVC) pattern as explained next:

• Core: it integrates TypeChef and FeatureIDE, maps features to preprocessor di-
rectives, and so forth;
• View: It provides views to show invalid products and configurations, and metrics,

such as the number of features and products, median of preprocessor directives
per file, and LOC;
• Model: it contains classes to represent, for example, syntax errors, invalid config-

urations and metric values;
• Controller: it is responsible to connect the model and view components, it notifies

the model to update changes and the views to update the presentation of the model.

E
C
L
I
P
S
E

CDT

TypeChef

FeatureIDE

Colligens

Component

Depends on

LegendView

C
o
r
e Model

Controller

Figure 6. The Architecture of Colligens.

Colligens tool works in the following way. The user clicks on the tool views,
and the controller calls TypeChef and FeatureIDE functionalities. Then, the controller
calls the model methods to get the results and passes it back to the views. The controller
also uses the CDT plug-in to get information, such as project name, paths, files selected
on the project explorer, and source roots. As we can see in Figure 6, our tool depends
on the Eclipse platform, CDT, FeatureIDE and TypeChef. FeatureIDE also depends on
the CDT functionalities, such as source code editors, preference screens, and its building
infrastructure.

3.2. Main Functionalities

In this section, we present the main functionalities of the Colligens tool to support the
development of SPLs in C. Its main functionaries are:

• Since we implement a mapping between the FeatureIDE feature model and the
C preprocessor directives, our tool provides a feature renaming functionality that
keeps both feature model and code consistent;
• Generation of all SPL valid products in C, which is possible due to the aforemen-

tioned mapping;
• A list of the errors pointed by TypeChef in terms of an Eclipse view. Using this

view, developers can click on its elements and our tool makes the cursor points to
the actual erroneous line, improving code navigation;
• When trying to generate products, our tool warns whether there are erroneous

ones (according to C language syntax and type rules). In case the user decides to
continue, our tool provides a view that lists invalid products (see Figure 4);
• A metric view that provides SPL information;
• A preferences screen, allowing developers to set some FeatureIDE and TypeChef

parameters.

4. Related Work
Beyond the TypeChef and FeatureIDE tools, we relate our work with the following tools.
The FeatureC++ tool extends the syntax of C++ with new keywords to support Feature-
Oriented Programming (FOP) [Apel et al. 2005]. It focuses on providing techniques to
express features in a modular way, e.g., using aspects. Our tool has a different focus, it
aims to support existing software families that implement features in a non-modular way
using preprocessor directives.

FeatureHouse is a general approach to the composition of software artifacts
[Apel et al. 2009]. It is language-independent in that we can compose artifacts written in
various languages. It integrates the FSTComposer, FSTMerge and FSTGenerator tools.

The AHEAD tool suite provides several tools for FOP [Batory 2006]. The AHEAD tool
also focuses on compositional SPL, and implements features as modular units, e.g., using
C++ classes. Thus, these tools are appropriated to compositional SPL, different from our
work that focuses on preprocessor-based product lines.

The CIDE tool implements the concept of virtual separation of concerns, where
we can associate a feature with a specific background colour [Kästner and Apel 2009]. It
focuses on preprocessor-based SPL. CIDE also integrates a variability-aware parser that
checks for syntax and type errors. However, different from our work, it only accepts
directives on structured code fragments.

5. Concluding Remarks
This paper presented Colligens, a tool to support the development of preprocessor-based
SPLs in C. The tool consists mainly of an Eclipse plug-in that provides an integrated en-
vironment to create feature models, map features to preprocessor directives, and generate
executable codes for the SPL products. Moreover, we applied our tool to real software
families, the libssh and libpng projects. Our tool is based on FeatureIDE, a tool for
feature-oriented programming, and TypeChef, which allows the checking of SPL prop-
erties without generating products. As a future work, we intend to implement extension
points to integrate other tools, such as SuperC [Gazzillo and Grimm 2012], which is an-
other variability-aware parser.

References
Apel, S., Kastner, C., and Lengauer, C. (2009). FEATUREHOUSE: Language-

independent, automated software composition. In Proceedings of the ICSE. IEEE
Computer Society.

Apel, S., Leich, T., Rosenmüller, M., and Saake, G. (2005). FeatureC++: On the sym-
biosis of feature-oriented and aspect-oriented programming. In In Proceedings of the
GPCE. Springer.

Batory, D. (2006). A tutorial on feature oriented programming and the ahead tool suite.
In Proceedings of the GTTSE. Springer-Verlag.

Clements, P. C. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
Addison-Wesley.

Gazzillo, P. and Grimm, R. (2012). SuperC: parsing all of c by taming the preprocessor.
In Proceedings of the PLDI. ACM.

Kästner, C. and Apel, S. (2009). Virtual separation of concerns – a second chance for
preprocessors. Journal of Object Technology (JOT), 8(6).

Kästner, C., Giarrusso, P. G., Rendel, T., Erdweg, S., Ostermann, K., and Berger, T.
(2011). Variability-aware parsing in the presence of lexical macros and conditional
compilation. In Proceedings of the OOPSLA. ACM.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2012). Fea-
tureIDE: An extensible framework for feature-oriented software development. Science
of Computer Programming.

Trujillo, S., Batory, D., and Diaz, O. (2006). Feature refactoring a multi-representation
program into a product line. In Proceedings of the GPCE, pages 191–200. ACM.

