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Abstract—The C preprocessor is a simple, effective, and
language-independent tool. Developers use the preprocessor in
practice to deal with portability and variability issues. Despite
the widespread usage, the C preprocessor suffers from severe
criticism, such as negative effects on code understandability and
maintainability. In particular, these problems may get worse
when using undisciplined annotations, i.e., when a preprocessor
directive encompasses only parts of C syntactical units. Never-
theless, despite the criticism and guidelines found in systems like
Linux to avoid undisciplined annotations, the results of a previous
controlled experiment indicated that the discipline of annotations
has no influence on program comprehension and maintenance. To
better understand whether developers care about the discipline
of preprocessor-based annotations and whether they can really
influence on maintenance tasks, in this paper we conduct a mixed-
method research involving two studies. In the first one, we identify
undisciplined annotations in 110 open-source C/C++ systems of
different domains, sizes, and popularity GitHub metrics. We
then refactor the identified undisciplined annotations to make
them disciplined. Right away, we submit pull requests with our
code changes. Our results show that almost two thirds of our
pull requests have been accepted and are now merged. In the
second study, we conduct a controlled experiment. We have
several differences with respect to the aforementioned one, such
as blocking of cofounding effects and more replicas. We have
evidences that maintaining undisciplined annotations is more
time consuming and error prone, representing a different result
when compared to the previous experiment. Overall, we conclude
that undisciplined annotations should not be neglected.

I. INTRODUCTION

The C preprocessor is a widely used tool in practice to
deal with portability and variability issues in configurable
systems [1]-[3]. To use the preprocessor, developers anno-
tate the variable code by using directives like #ifdef,
#elif, #else, and #endif. Existing studies [4] classified
preprocessor-based annotations in disciplined and undisci-
plined. Undisciplined annotations happen when the prepro-
cessor directive does not encompass the entire subtree in the
corresponding abstract syntax tree. In this sense, annotating
only the expression of an if statement (and leaving its body
unannotated) represents an undisciplined annotation example.

In a previous study [5], researchers conducted a controlled
experiment to test the assumption that the discipline of an-
notations has influence on comprehension and maintenance
of annotated code. However, their results do not support
this assumption, i.e., they concluded that the discipline has
no influence on such tasks. Their findings are based on
measurements in terms of response time to conclude mainte-
nance and comprehension tasks; and correctness of such tasks.
Nevertheless, undisciplined annotations have been strongly
criticized, since they make the code harder to read, understand,
and maintain [2], [6], [7]. In addition, there are guidelines that
ask developers to not use them. For instance, there is a specific
recommendation for contributing to the Linux Kernel that
states the following: “Prefer to compile out entire functions,
rather than portions of functions or portions of expressions.”!

Given this scenario, we decided to better evaluate whether
developers really care about the discipline of preprocessor-
based annotations and whether these annotations can really
make a difference on software maintenance tasks. Our research
is inspired by previous works that contact actual developers
using source code repositories (e.g., GitHub) [3], [8] and by
the aforementioned experiment [5]. Understanding the advan-
tages and disadvantages of having disciplined annotations is
important to guide the development of new tools and improve
programming practices on this front.

This way, to better understand whether the discipline mat-
ters, we conduct a mixed-method research that consists of
two studies. In the first one, we focus on the following
research question: Do developers accept suggestions to remove
undisciplined annotations? To answer this question, we ini-
tially find several undisciplined annotations in 110 open-source
C/C++ systems of different domains, sizes, and popularity
GitHub metrics. Then, we manually refactor the code to make
the annotations disciplined. We refactor only one annotation
per project. Right away, we submit a pull request with
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our code changes. We also submit comments and questions
using GitHub to understand the developers thoughts about
our pull requests. This study extends the one we executed
previously [9]. To bring more evidences, here we present four
times more pull requests. Also, in this paper we categorize the
developers answers by using a word cloud to better understand
the reasons behind accepting and rejecting the pull requests.

In the second study, we intend to answer the following
research questions: Does the use of undisciplined annotations
increase the time to perform maintenance tasks? and Does
the use of undisciplined annotations increase the number of
errors committed by developers during maintenance tasks? To
answer these questions, we conduct a controlled experiment
with 64 participants (undergraduate students). However, while
we focus on maintenance tasks to test the same dependent
variables (response time and correctness), we have differences
when compared to the previous experiment [5]. First, we de-
signed the experiment to (a) block two sources of confounding
effects (the experience and involvement of the participants and
the set of tasks they should perform) and (b) increase the
number of replicas, which allows us to obtain a more precise
estimate of the factor/interaction effect [10]. Second, the previ-
ous experiment [5] used clones to discipline some annotations,
making the number of lines of code sometimes very different
when compared to the task with undisciplined annotations. In
contrast, the number of lines of code of our experiment is
fairly comparable, i.e., the disciplined and undisciplined code
used in all tasks have almost the same number of lines of
code. In addition, in our experiment we do not compute time
of “almost correct” tasks. Only entirely complete tasks are
considered. We discard incomplete ones. Moreover, we do not
make comparisons like correcting an error in disciplined code
against identifying an error in undisciplined code. To the best
of our knowledge, these tasks are different and should not
be comparable. On the other hand, our experiment only has
three kinds of maintenance tasks: fix a syntax error, introduce
a new feature variant, and fix a semantic error in a specific
variant. The previous experiment has seven and includes the
three kinds of tasks we consider.

Our results suggest that it is important to take the discipline
of annotations into account. Regarding the pull requests we
submitted, 99 out of 110 have been answered and decided.
Almost two thirds have been accepted. From the set of rejected
ones, some developers mentioned they could accept in case
we had submitted the pull request to a different code snippet,
e.g., not to a deprecated one. In this case, we reach a total
acceptance rate of 71%. With respect to the controlled ex-
periment, our observations lead to evidences that maintaining
undisciplined code is more time-consuming and error prone.
This result contrasts with the previous experiment [5].

In summary, this paper provides the following contributions:

e An empirical study based on pull requests to better

understand the thoughts of practioners with respect to the
discipline of preprocessor-based annotations. We extend
our previous study [9] by (i) presenting four times more
pull requests; (ii) asking whether developers would accept

the pull requests in case we had submitted to different
code snippets; and (iii) categorizing the answers in terms
of a word cloud to better reason about the developers
thoughts. (Section III);

o A controlled experiment that investigates the effect of
the discipline of preprocessor-based annotations in terms
of response time and correctness in maintenance tasks.
(Section IV).

II. DISCIPLINED VS. UNDISCIPLINED ANNOTATIONS

The C preprocessor is a simple, effective, and language-
independent tool. Developers widely use it in practice to deal
with portability and variability issues. It is essentially used in
all projects written in C and C++, including many well-known
web servers, databases, and operating systems [3].

However, the C preprocessor has received strong criti-
cism. Previous studies raise problems regarding the lack of
separation of concerns [2], [6], [7], proneness to introduce
subtle errors (such as syntax errors, memory leaks, undeclared
identifiers etc) [11]-[15], and obfuscation of the source code,
making the task of reading and understanding the code more
difficult [1], [16]. In particular, these problems may get worse
when using undisciplined annotations [3]. In this case, the
preprocessor directives encompass only parts of C syntac-
tical units. In this paper, we use the same definition of a
previous work [5]: “Disciplined annotations align with the
underlying structure of the source code by targeting only code
fragments that belong to entire subtrees in the corresponding
abstract syntax tree.” By using this definition, an example
of disciplined annotation is an #ifdef encompassing an
entire 1f statement. On the other hand, annotating just part
of the conditional expression of an if statement represents an
example of undisciplined annotation.

Figure 1 illustrates a code snippet from the Nginx web
server.” The left-hand side contains undisciplined annotations.
One of the Nginx developers disciplined the annotations. No-
tice that the annotations at right-hand side contain fragments of
code that belong to entire subtrees, i.e., complete assignments.

Despite all criticism regarding undisciplined annotations
(not to mention guidelines to avoid them, e.g., in Linux), pre-
vious research concluded that the discipline of annotations has
no observable effect on comprehension of annotated code [5].
Because undisciplined annotations seem more difficult to read
and understand [2], [3], [6], [7], in this paper we intend
to better understand the developers thoughts on this front
and whether disciplined annotations really do not matter on
maintenance tasks. To do so, we conduct two studies. The
first one focuses on contacting actual developers by using
pull requests (Section III); and the second one presents a
controlled experiment inspired by the aforementioned one [5]
(Section 1V).

III. STUDY 1: PULL REQUESTS

The first study we report in this paper regards the sub-
mission of a set of pull requests to discipline existing
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#if (WIN32)
if ((ready = select(@, NULL, tp))
#else
if (Cready = select(max_fd + 1, NULL, tp))
#endif
= -1 {
ngx_log_error(NGX_LOG_ALERT);
return NGX_ERROR;
if (ready == -1) {
err = ngx_socket_errno;
} else {
err = 0;

}

3

#1f (WIN32)
ready = select(@, NULL, tp);
#else
ready = select(max_fd + 1, NULL, tp);
#endif
if (ready == -1) {
ngx_log_error(NGX_LOG_ALERT);
return NGX_ERROR;
if (ready == -1) {
err = ngx_socket_errno;
} else {
err = 0;

3

}

Fig. 1. Nginx developer avoiding undisciplined annotations in ngx_select_module.c. Commit: 8292037f7¢233£8351b4baf90c84656550cb12cf

preprocessor-based annotations of open-source systems. Our
assumption here is that the acceptance rate of the pull requests
might serve as an indication that this kind of refactoring is
relevant, and thus the differences between disciplined and
undisciplined annotations are significant for software main-
tenance and program comprehension. Now, we present the
settings of this study. Then, we present and discuss the results.

A. Settings

We use the pull requests to answer the following question:
Do developers accept suggestions to remove undisciplined
annotations? Answering this question is important to check
whether developers feel more comfortable with disciplined
annotations. Also, their comments related to the pull requests
can bring new perspectives on the benefits and possible side-
effects of disciplining preprocessor-based annotations.

To change the code and perform the pull requests, we
first need background on how to discipline preprocessor-based
annotations. In this context, previous studies propose trans-
formations to turn undisciplined annotations into disciplined
ones. However, some of the existing transformations lead to
code clones [4], [17], [18]—which might be considered an
undesirable result. In contrast, in this paper we use a catalog
of refactorings to remove undisciplined annotations that does
not clone code [19]. We used three refactorings available in
the catalog: Refactoring 2, Refactoring 4, and Refactoring 6
(R2, R4, and R6). We used these refactorings because it is
common to find opportunities to apply them in practice [9].

Figure 2 illustrates the strategy we performed. For each
system, we first use a tool to find undisciplined annotations
(Step 1). This tool is able to find opportunities to apply
the catalog of refactorings, such as the left-hand side of
Figure 1. Because we execute the tool considering the en-
tire systems source code, we can find several undisciplined
annotations. Yet, for each project, we randomly select only
one undisciplined annotation to work with. This is important
to minimize bias, such as having several decisions (accepting
or rejecting the pull requests) from the same developer. Then,
given the selected undisciplined annotation, we apply a proper
refactoring from the catalog to make it disciplined and submit
a pull request right away (Step 2). Notice that we neither fix

bugs nor submit new test cases. We only focus on submitting
a disciplined version of the annotation. Upon the request of
systems’ developers, we submit comments (using GitHub) to
better clarify the changes (Step 3). This is a typical approach
to have pull requests accepted in open-source systems.

| |
PN
| |
flpl ( ( | W #ifder F
#ifdef F #ifdef F #ifdef F I f(pl, p2); |
, p2 , p2 , p2
#endif #endif #endif |
d; d; d; | |
| |
| |
| |

#else

flpL);
#endif

commit
#n +2

commit
#n+1

commit commit
#n-1 #n

(4]

Developer

Comments, questions... @ git commit @
_  »

O GitHub Ourselves

Fig. 2. Our strategy to make suggestions to remove undisciplined annotations.

We submit pull requests to several systems written in C/C++
of different domains, sizes, and GitHub popularity metrics,
such as openvpn, libpng, libxmi2, cherokee, sonyxperiadev,
SQLite3, Arduino, and TcpDump.

B. Results and Discussion

We submitted 110 pull requests, which means we considered
110 preprocessor-based systems. The list of all systems to
which we submitted pull requests is available at our companion
website.® Figure 3 illustrates four pull requests we submitted
and the refactorings we used for them (i.e., R2, R4, and R6).
At the top of the figure, on the left-hand side, we show a
pull request that has been accepted. On the right-hand side,
we have a pull request that has been rejected. Figure 3 also
shows the developers comments regarding each pull request.

The accepted category is straightforward: it means that the
developer accepted the pull request and merged the changes
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0 Accepted

if (f->f_root.len
8& I(f->f_root.ptr[ @ ] == '.")
8& I(f_dir.ptr[ 0] = /")
#1f PATH_DELIM == "\\'
8& I(f->f_dir.ptr[ @ ] == "\\")

int check_f = (f->f_root.len
8& 1(f->f_root.ptr[ 0] == '.")
8& (f->f_dir.ptr[ 0] = '/'));

#1f PATH_DELIM == "\\"

=P check_f = (check_f

8& I(fdir.ptr[ 1] = ":") 8 I(F->f_dir.ptr[ 0] == "\\")
#endif 8& I(f->f dir.ptr[ 1] = ':"));
) #endif

{ // Lines of code... } if (check_f) { // Lines of code... }

G Rejected
int mpc_test;

#ifdef MPC_SV8
mpc_test = (demux(p->decoder, offset) == MPC_OK);
#else
=P mpc_test = (decoder(&p->decoder, offset));
#endif
if (mpc_test) {
return 0;

#ifdef MPC_SV8

if (demux(p->decoder, offset) == MPC_OK)

#else

if (decoder(&p->decoder, offset))

#endif

{
return 0;

}

3

“This refactoring makes code cleaner... Thanks again for your contribution!”

Might Accept

. Library

#ifdef LWIP_TCPIP_CORE_LOCKING
if (conn->write_delayed != @)
#endif

int conn_write_delayed = 1;
#1f LWIP_TCPIP_CORE_LOCKING
conn_write_delayed = (conn->write_delayed != 0);

{ =P #endif
sys_sem_signal(conn->op_completed); if (conn_write_delayed) {
} sys_sem_signal(conn->op_completed);

3

“Thanks for the interest, and for finding this in the source! | couldn tagree with you more that the source
that you pointed out is difficult to follow, and that you're increases the r
However, the change you propose is in an external library (Iwip) that we include in our system.”

“Thanks for the PR — but | don't think it makes code better in this case. mpc_test is a bad variable name,
and more importantly, the change is inconsistent with the rest of the file.”
. . bool va = (reserved_va >> shift) != unshifted;

=
if (((reserved_va >> shift) != unshifted) FF TS TILONGEITS > VIRTZADHR
#if HOST_LONG_BITS > VIRT_ADDR

q #endif

#endif = i v ©

® Deprecated G Rejected
|1 Creserved.va > (lul << VIRT_ADDR)) va = va || (reserved_va > (lul << VIRT_ADDR));
// Lines of code...

) {

// Lines of code...

}

}

“I see what you're refernng lo with lhe readablhly of that conditional directive, though | think it could be
made even more r #if and putting the HOST_LONG_BITS > VIRT_ADD
directly into the condmonal Oh also that file is under extral/, meaning it is deprecated.”

Fig. 3. Examples of pull requests we submitted. Below each transformation, we illustrate the messages we got from the developers.

into the system repository. To better analyze the rejected pull
requests, we consider two additional categories besides the re-
jected itself: deprecated and third-party code. The deprecated
category is also straightforward. It means we submitted a pull
request to deprecated code. So, it makes no sense to accept
it. Third-party code means we submitted a pull request to a
code written by third parties (e.g., libraries) that is somehow
mixed with the core system code. In this context, almost
all developers we interacted do not allow contributions to
such code. Instead, some of them suggested to perform the
pull request directly to the third-parties repositories. Despite
rejecting, notice that the motivations behind these rejections
are not necessarily related to our changes, but to where we
performed them. At the bottom of Figure 3, we illustrate one
pull request for each of these two categories. We present the
developers comments as well.

The barplot of Figure 4 illustrates the acceptance rate of
our pull requests. So far, 11 pull requests out of 110 had
no decision. The plot of Figure 4 disregards them. So, we
present the results based on 99 pull requests. Notice that, when
considering the ones we have a decision, almost two thirds
(63%, 62 pull requests) have been accepted. As mentioned,
we did not implement any additional test to check our pull re-
quests. Nevertheless, developers agreed to accept the changes
regardless of having new test cases. In fact, no pull request has
been rejected exclusively because of tests absence. Still on the
accepted pull requests, 43 (69%) out of 62 have been accepted
with no changes needed. On the other hand, 19 (31%) required
some changes, such as to follow code guidelines specific of
each system (e.g., variable names, blank spaces, indentation
of #ifdef directives etc). Now we show some comments of
three developers that accepted submitted pull requests:

“That’s much better.”
“Easier to read.”

“Ok, thanks for the fix. Further improvements are
welcome.”

Another developer mentioned that refactoring undisciplined
annotations appears even in to do lists. “I agree. In fact, it’s
in the libpng17 TODO list: Refactor preprocessor conditionals
to compile entire statements.” Now we present comments of
three developers that rejected the pull requests:

“We generally don’t do stylistic-only changes.”
“Not only is the code you wrote wrong, I also
think it’s not needed and probably even harder to
understand.”

“I’d call this code harder to read.”

Notice that we have positive and negative comments regard-
ing code comprehension. We find this scenario not surprising
since we are dealing with personal opinions. However, the
majority believes that our changes based on disciplined an-
notations improve program comprehension. Some developers,
on the other hand, clearly consider that disciplining the an-
notations is just a matter of code style. In this context, they
say they have lots of bugs and more serious problems to deal
with and rather should focus on them. Thus, they rejected our
pull requests. Still on the style, we got some other rejections
because the disciplined “style” we introduced is not replicated
throughout the rest of the code. In addition, since we are
not experts in the code we submitted the pull requests, we
unintentionally introduced some bugs in a very few scenarios.
For obvious reasons, these pull requests were rejected. To
have a general view of the answers, we fit all of them in 16
categories we defined. Figure 5 presents the answers according
to these categories in terms of a word cloud.

We also investigate the rejected pull requests we submitted
to deprecated and third-parties code. We asked the developers
whether they would accept these pull requests if it was not
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Fig. 4. Results of our pull requests.

Prefer to save lines of code
0 advantages
Improves readability
£8Third parties code
Not easier to read or understand

Thanks, merged

StleStIC (_:hanges Deprecated
Bad variable name
Breaks the code
at's much better .
Sorry, more serious issues to deal with
| want to make as few changes as possible

s is not required
n't like your change

Fig. 5. Word cloud presenting 16 categories of answers.

for the fact we submitted to deprecated and third-parties code.
In this sense, 9 (50%) out of 18 developers answered they
would accept. If we consider these cases as potential accepts,
we reach a total acceptance rate of 71%. In what follows, we
present two positive answers (might accept) and one negative
(reject anyway):

“Sure, but I would love to see them on the core
project.”

“Oh yes, I would say it is a better implementation.”
“Sorry, we have to be practical here - so many more
serious bugs and issues.”

We now present the results with respect to each refactoring
we used from the catalog [19] (see Table I). Notice that
Refactoring 2 was applied just in a few pull requests. When
considering the “Might accept” cases as accepts, Refactoring 4
and Refactoring 6 reach 74% and 64% of acceptance rate,
respectively. We notice a slightly better tendency of acceptance
in favor of Refactoring 4, but we need further studies to deliver
significant conclusions.

Based on our results, almost two thirds of the developers
accepted our suggestions to remove undisciplined anno-
tations. Overall, these results suggest that undisciplined
annotations are important and should not be neglected.

TABLE I
DISTRIBUTION OF THE PULL REQUESTS DECISIONS PER REFACTORING
(R2, R4, AND R6 [19]).

Refactoring | Status Occurrences
Accepted 3
2 Might accept 1
Rejected 1
Accepted 40
4 Might accept 7
Rejected 16
Accept 19
6 Might accept 1
Rejected 11

C. Threats to Validity

Submitting one pull request per system threats to external
validity. Our decision on this front however was to avoid two
or more answers from the same developer. Yet, we believe
we minimize this threat because we have a great number of
pull requests in a great variety of systems domains and sizes.
In addition, the small number of refactorings we used from
the catalog (Refactoring 2, Refactoring 4, and Refactoring 6)
to discipline annotations [19] represents a threat to external
validity as well. We used three refactorings (see Figure 3). In
this sense, we cannot generalize our results to other refactor-
ings that discipline preprocessor-based annotations. However,
we used these three refactorings due to the high frequency of
opportunities to apply them in practice [9]. In other words,
the left-hand sides of Figure 3 are common in existing code
of open-source systems. In addition, all refactorings we used
focuses on if statements, again representing a threat to
external validity. However, notice that the three refactorings
can also be applied to other statements (e.g., while, for
etc) [19].

Regarding the rejected pull requests we submitted to dep-
recated and third-parties code, 9 (50%) out of 18 developers
answered they would accept in case we had submitted the pull
requests to the core project. In the total rate acceptance (71%),
we included these cases. This decision represents a threat since
these “acceptances” were not merged.

In some cases, developers asked why they should accept our
suggestions to remove the undisciplined annotations. We then
argued in favor of disciplined annotations, e.g., mentioning
that code understandability could be improved. In this sense,
our comments could induce developers to accept some pull
requests and thus represent a threat. However, we minimize
this threat because this is the situation that indeed happens in
real practice: in general, when developers submit pull requests,
they believe their submissions improve the existing code and
make comments in favor of the them.

IV. STUDY 2: CONTROLLED EXPERIMENT

In this section we present our controlled experiment. Here
we mitigate two limitations of [5]: the lack of replication and
blocking. We present the settings, experimental units, and then
discuss the results.



A. Study Settings

Our investigation aims to understand the effect of undis-
ciplined annotations on software maintenance tasks. To do
so, we focus on the following two research questions: Does
the use of undisciplined annotations increase the time to
perform maintenance tasks? and Does the use of undisciplined
annotations increase the number of errors committed by de-
velopers during maintenance tasks? We answer our questions
by comparing undisciplined annotations with disciplined ones.
To answer both research questions, we measure the time
necessary for a given subject to conclude a set of maintenance
tasks; and the errors he committed during these tasks (trials).
Accordingly, we state the following null hypotheses:

o H1y: there is no significant difference in the time neces-
sary to maintain disciplined (the control treatment) and
undisciplined (the treatment under investigation) annota-
tions;

e H2y: there is no significant difference in the number
of errors committed by developers when maintaining
disciplined (the control treatment) and undisciplined (the
treatment under investigation) annotations.

Since we are comparing two treatments, in case we reject
the null hypotheses, we only have to compare the mean value
of the control and treatment observations to estimate the effect
of the undisciplined approach on maintenance tasks.

The design of our experiment blocks two variables: (a)
the participant skills and engagement; and (b) two sets of
maintenance tasks. The Latin square design of order two with
replicas is suitable in this situation, where the goal is to
compare two treatments and block two variables [20]. Each
Latin square replica comprises two participants (randomly as-
signed to the rows of the squares) and two sets of maintenance
tasks (representing the columns of each square, i.e., ST and
ST5). Figure 6 presents the design of our experiment. We also
randomly set the treatments that each participant should use
in STy and ST5. For example, the 4th participant of Figure 6
should solve ST} using undisciplined annotations (U) and ST5
using disciplined ones (D) in this order. Since we have several
participants taking part of the experiment, our design consists
of several Latin squares of order two.

This design uses randomization to assign the participants
to the squares and assign the treatments to the cells of
each square. Each treatment appears once in each row and
column. This way, we block the two sources of variability: the
participants and the two sets of tasks. The design also leads
to one replica for each Latin square (increasing the number of
errors’ degrees of freedom) [21].

B. Experimental Units

The participants of our experiment are 64 undergraduate
students from three different courses at the University of
Brasilia, Brazil: Computer Science, Computer Engineering,
and Mechatronic. All students were enrolled in an advanced
course on programming techniques and have 3 to 5 semesters
of experience in programming (particularly using imperative

t[ulo] 2[o]uv] Z[u]o
Py

plu|l L|lulo| « L |p]|u

2 4 64
Square 1

ST1 = Set of Tasks 1

Square 2 Square 32

ST,= Set of Tasks 2 @

Fig. 6. Design of the experiment using Latin squares.

languages such as C, C++, and Java). They also have some
previous experience using the C preprocessor. The participants
were randomly organized in an initial set of 32 Latin squares
and received a 50 minutes training on the subject of config-
urable systems using the C preprocessor. Our training material
had examples of both disciplined and undisciplined annota-
tions, but we did not mention these terms. We only focused
on showing two different ways of annotating preprocessor-
based code. Before the actual experiment, we asked the
participants to perform warmup tasks comprising disciplined
and undisciplined annotations.

For the experiment execution, we have prepared two virtual
machines, each one having six pre-configured instances of the
Eclipse IDE. We have one instance of the Eclipse for each
distinct maintenance task. Figure 7 illustrates our setup. Virtual
Machine 1 should be used by participants that solve ST
(comprising T'1, T2, and T'3) using disciplined annotations
and ST5 (comprising T4, T5, and T'6) using undisciplined
annotations in this order. In Virtual Machine 2, we invert our
treatments, according to the Latin square design.

Our tasks are based on existing code of two highly-
configurable systems, LIBXML?2 and VIM, which have been
used in several other studies [4], [5], [11], [16]. We adapt and
simplify all tasks to fit the scope of our research and to allow
the participants to conclude them in a section of at most 150
minutes. We have three kinds of tasks for both systems (see
Figure 8). In the first one, participants should fix a syntax error
by identifying and removing an additional parenthesis in one
specific configuration (variant). In the second one, there are
alternative function calls annotated with #ifdef and #else
directives. The task consists of adding a new variant (using
#elif, for example). In addition, some parameters (described
in the task) should be annotated with directives as well. Last
but not least, in the third one, the participants should fix a
semantic error. Several parts of an arithmetic expression are
annotated with preprocessor directives. One variant computes
an incorrect value. We indicate the problematic variant and
expect the participants to fix it. Altogether, we have prepared
12 maintenance scenarios: six with disciplined annotations and
six with undisciplined ones. To simplify the distribution of
the participants for the experiment execution, we configured
two laboratories of the Computer Science Department of
the University of Brasilia, Brazil (see “Laboratory I” and
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Fig. 7. Structure of the experiment in terms of experimental units.

T1: Fix a syntax error

T3: Fix a semantic error in a specific variant

#else
r=5;
#ifdef PF_INET
#ifdef AF_INET

#else
r=5%*(10 - xml(22,
#ifdef PF_INET

if Ccfo] != i 8& ( r=r* (10 - xml(22, 30, 32) i?%di?z\r NET
int tst = c[0] != ":"; #ifdef SUPPORT_IP6 +prt) * pl; -
#ifdef SUPPORT_IP6 el =" T2: Introduce a new variant #else +pr) * pb
tst = (tst 8& c[3] != ' '); |#if defined PF_INET || AF_INET P et (10 - 22, 30, 32y |PCSC
#1f defined PF_INET & #ifdef HAVE_SP Cpx 4 pb); - px +p)
tst = tst && (c[1] != '/' || |#if defined PF_INET 1 = sp(buf, "PORT %d,%d,%d,%d,%d,%d", | .\ c e o sendif ::2;‘
cl4] 1= ' "5 | Cel1] 1= 1t af@] & oxff, a[1] & Oxff, - | ketlse
#else telse al2] & OxFf, a[3] & OXFF, L el TPORT MLMLRNIIAI | | et ar_ThET ww
tst = tst && (c[2] != "' |1 |(c[2] != 'O’ plO] & Oxff, p[1] & OxFF); 1 - sho(buf, sizeof(buf Pt (10 - 22, 31, 37y |7 i) -
LT t= T fenart pelse "PORT !, ¥, . ¥ ¥, % +prt) * el e P
#endif Il c[4] =" " 1 = snp(buf, sizeof(buf), Jendif PR AL AL A selse #else
#else #endif "PORT %d,%d,%d,%d,%d,%d" , a[0] & OXFF, a[1] & OxFF, Pt (10 - xml(22, 31, 37) ;e:;; pL
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Fig. 8. Code snippets of the LIBXML?2 tasks. We have three analogous ones for VIM.

“Laboratory 2” at the top of Figure 7).4

C. Execution and Data Analysis Procedures

We first randomly assign the 64 participants to the 32 Latin
square replicas. Then, we randomly assign the treatments (Dis-
ciplined x Undisciplined) to the cells of each Latin square.
Actually, after assigning a treatment to the first cell of a Latin
square of order two, the remaining cells are automatically
defined within that particular square.

We then conducted the participants to either Laboratory 1 or
Laboratory 2, depending on their assignments. After all virtual
machines were set, we detailed the tasks and the procedures
they should follow. That is, the participants should begin by
executing the Eclipse instance related to 7'1. Then, they should
start a chronometer (Play button) using a plugin we have
implemented for the experiment, and perform the maintenance
task. Our plugin has also a Pause button, for asking questions
during the experiment, for example; and a Finish button, when
done. When the solution is submitted (by pressing Finish),
the plugin automatically runs a set of test cases to check
whether the participant indeed concluded the task. In case of
success, we stop and record the time. Then, such participant
is allowed to close the Eclipse instance regarding 7'1 and

4The artifacts that we used in our experiment are available at the companion
website: https://sites.google.com/site/icpc2017easylab/

The snippets are simplified due to space restrictions.

proceed to T2 (using the corresponding Eclipse instance).
Similar instructions should be performed in 72—T'6. If a test
fails, we increase the number of errors (trials) counter and let
the participant continue until success is accomplished.

Perhaps due to the nature of the tasks, only 30 participants
concluded all tasks within 150 minutes. Differently from
the previous experiment [5], we do not consider ‘“almost
correct” results. We decided to adopt a conservative approach,
disregarding the data (time and number of errors) of any
participant that did not accomplish successfully all tasks on
time. This way, some of our squares will be incomplete (with
only one row). Therefore, to maximize the number of replicas,
we randomly rearranged the participants that concluded all
tasks in new Latin squares. When considering only this final
set of observations (30 participants), we also found several
time observations below 4 minutes. This value is close to
the first quartile, i.e., 3 minutes and 46 seconds. To avoid
a possible threat related to time measurements of participants
that did not start the chronometer in the expected moment
(Play button), we decided to use a linear regression method as
imputation strategy for the time observations below 4 minutes.
Again, this is a conservative approach we follow to avoid
bias. In summary, from a total of 180 observations (six tasks,
30 participants), we imputed 27 observations based on tasks
with disciplined annotations and 21 observations based on



undisciplined ones. After the data imputation, we proceeded
with an exploratory data assessment and tested the hypotheses
introduced in Section IV-A using the Analysis of Variance
method (ANOVA), as we detail in the next section. Before
the hypothesis testing, we checked whether the response data
satisfies the ANOVA assumptions.

D. Results and Discussion

The boxplot of Figure 9 shows some descriptive statistics
related to the total time spent by the participants to conclude
all tasks. Some relevant information could be drawn from this
figure. For instance, the total time median when using undisci-
plined annotations (63 minutes) is almost 90% greater than the
median when using disciplined annotations (35 minutes). Most
of the observations related to the total time to conclude all
tasks, when using disciplined annotations, lies between 30.00
and 52.75 minutes (the first and third quartiles, respectively);
in contrast, most of the observations when using undisciplined
annotations lies between 49.00 and 72.50 minutes. There is
almost no overlapping between the two “boxes,” which leads
to some evidences that performing maintenance tasks with
undisciplined annotations is more time consuming.

100
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20
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Disciplined Undisciplined

Fig. 9. Total time to conclude all tasks.

Figure 10 shows a density plot of the differences T'u — T'd,
that is, the time that each participant spent using undisciplined
annotations (7'u) and the time that each participant spent using
disciplined annotations (7'd). Notice that most participants
spent more time when using undisciplined annotations, and
thus most of the differences correspond to positive values.
However, some participants—seven (23%) out of 30—were
able to conclude all tasks using undisciplined annotations more
quickly than when using disciplined ones. The median of the
time differences for those cases is 17 minutes. However, one
participant spent 43 minutes less solving the tasks when using
undisciplined annotations than when using disciplined ones.

Besides the exploratory data assessment, we test the first
hypothesis (H1) of this study using the Analysis of Variance
(ANOVA) technique. We first validate the model using the
Global Validation of Linear Model Assumptions [22], which
is a global test for the typical assumptions that might constraint
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Fig. 10. Density plot considering time differences 7'u — T'd, where T'u is the
time a participant spent using undisciplined annotations and 7'd is the time a
participant spent using disciplined ones.

the use of ANOVA: Linearity, Homoscedasticity, Uncorrelat-
edness, and Normality. To test these assumptions, we used the
GVLMA R library and found that the model is acceptable. We
then tested our first null hypothesis and found evidences for
rejecting it (p—value = 0.004 < 0.05 = «). This leads to the
first conclusion of this second study.

Based on both exploratory data analysis and hypothesis
testing, we conclude that the use of undisciplined anno-
tations increases the time when performing maintenance
tasks in preprocessor-based systems.

We follow a similar approach to investigate the second
hypothesis, which relates to error-proneness when maintaining
preprocessor-based systems. We first carry out an exploratory
data analysis. Figure 11 shows a boxplot that presents some
descriptive statistics related to the number of errors committed
by the participants (i.e., number of trials necessary to conclude
all tasks). Notice that the number of trials median when using
undisciplined annotations (15.0 trials) is almost 300% greater
than the number of trials median when using disciplined
annotations (4.50 trials). However, differently from the boxplot
of Figure 9, Figure 11 presents a moderate overlapping. Also,
notice that most of the observations related to disciplined
annotations lies between 3.00 and 10.75 (the first and third
quartiles, respectively), whereas most of the observations
using undisciplined annotations lies between 6.00 and 23.25.
Consequently, we cannot infer a sound conclusion about our
second hypothesis by only observing the boxplot of Figure 11.

We found that seven® participants (23%) out of 30 submit-
ted more answers when using disciplined annotations before
correctly concluding the experiment. The remaining partici-
pants submitted more trials when using undisciplined ones.

S5These seven participants are not necessarily the same seven we cited when
discussing the first hypothesis. This number is just a coincidence.
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Fig. 11. Number of trials to conclude all tasks.

This suggests that maintaining preprocessor-based systems
with undisciplined annotations is more error prone. We also
investigate our second hypothesis (H2) using ANOVA. The
regression model in this case also complies with the ANOVA
assumptions. We tested the null hypothesis and also found evi-
dences for rejecting it (with a p—value = 0.0001 < 0.05 = .
This leads to the second conclusion of this second study.

Based on the ANOVA hypothesis testing, we conclude that
the use of undisciplined annotations is more error prone
when performing maintenance tasks in preprocessor-
based systems.

One last interesting result regards tasks 72 and 7’5 (intro-
duce a new variant). We observed that eight out of 30 (26%)
participants disciplined the annotations (four for 72 and four
for T'5) when they received undisciplined ones, even though
we did not mention anything on this front during the entire
experiment. One participant did the opposite for T'5.

E. Threats to Validity

In this section we report potential threats to the validity of
our experiment. We consider the classification of Wohlin et
al. [23]. First, regarding Conclusion Validity, notice that our
conclusions build upon a high statistical power of regression
models that satisfy all ANOVA assumptions—thus we mitigate
two possible sources of threats: low statistical power and
violated assumptions of statistical tests. Reliability of measures
also concerns to Conclusion Validity, and a possible threat
to our experiment relates to the procedures the participants
should have taken to measure the time. Probably, some par-
ticipants did not start the chronometer at the beginning of
their tasks. However, notice that this situation is likely to
occur in both treatments, i.e., disciplined and undisciplined
annotations. In addition, we decided to impute all suspicious
data (time measurements below the first quartile). Despite not
presenting the results in the paper, we also carried out a data
analysis without performing the imputation, and the results
also lead to evidences to reject the first null hypothesis of
the experiment. Notice that the imputation procedure was

not needed for the second hypothesis, since there was no
problem when gathering the number of errors data.

The Latin square design deals with sources of Construct
Validity threats (such as Mono-operation bias and Interaction
of different treatments) [23]. In addition, we considered in our
experiment two distinct observations: the time to conclude
maintenance tasks (effort) and the number of errors (trials)
submitted until concluding the maintenance tasks (error prone-
ness). There is a moderate correlation between these two mea-
surements (0.61 Pearson’s correlation), and thus we mitigate
another possible source of Construct Validity, named Mono-
method bias [23]. In addition, there is a certain cross-validation
of the results of our experiment with the results of the first
study reported in this paper, which is based on Pull Requests.
Also, we tried to avoid most possible sources of bias. For
instance, the results when applying the imputation procedure
were slightly more favorable to undisciplined annotations (less
time to conclude the tasks), even though we report evidences
to conclude that this approach is more time consuming during
maintenance tasks. Those decisions mitigate possible Social
threats to construct validity.

There is an extensive debate between Internal x External va-
lidity [23], [24]. In summary, if the goal is to establish a cause-
effect relationship involving treatments and response vari-
ables, the use of rigorous controlled experiments is needed—
typically including students to increase the number replicas.
This supports the internal validity of the work, though hinders
the possibility to generalize the results to different situations.
Accordingly, we cannot generalize the results of our experi-
ment to other maintenance scenarios—although we explored
three typical maintenance tasks involving preprocessor-based
code: fix a syntax error, introduce a new feature variant, and
fix a semantic error in a given variant. We cannot generalize
our results to the population of professional developers as well,
since the participants of our experiment were undergraduate
students. However, some studies argue in favor of using
students to conduct controlled experiments [25], [26].

Our strategy in this paper was to conduct a multi-method
research that initially considered the opinion of open-source
systems developers with respect to the benefits of disciplining
preprocessor-based annotations (the first study); and then we
performed a controlled experiment to better understand some
causal relationships of using undisciplined annotations on
typical maintenance tasks (the second study). In this situation,
the first study favors external validity, while the second study
favors internal validity.

V. IMPLICATIONS

Developers introduce undisciplined preprocessor directives
even in projects with explicit coding guidelines targeting
undisciplined annotations, such as in the Linux Kernel [4].
Thus, these guidelines are not sufficient to prevent develop-
ers from introducing undisciplined annotations in the source
code. Our results suggest that project managers and senior
developers need to enforce guidelines more efficiently to avoid
undisciplined annotations, for example, by performing code



reviews, by rejecting patches with undisciplined annotations,
and by discussing this topic in email lists to make developers
aware of the problem. Furthermore, based on our results, it
seems important to develop tools to IDEs (such as Eclipse,
Emacs, and Sublime) or extend existing ones [4], [9], [17],
[27] to detect undisciplined annotations and warn developers.

As mentioned, Schulze et al. [5] performed a controlled
experiment regarding the discipline of preprocessor-based an-
notations and found that the discipline of annotations has no
observable effect on code comprehension and maintenance
tasks. They mentioned, however, that more research on this
topic is needed. In this paper, we claim the same, specially
because we achieved different results and because several
practitioners accepted our pull requests, demonstrating that
they do not neglect undisciplined annotations.

VI. RELATED WORK

Researchers and practitioners have criticized the C prepro-
cessor because of its limited separation of concerns and code
obfuscation that make maintenance and code comprehension
difficult [4], [6], [7], [17], [28]. In particular, undisciplined
preprocessor annotations have been related to error prone-
ness [7], [11], [17], [28], hindered code understanding and
maintainability [2], [6], [7], and limitations in tool support [6],
[17], [28]-[30]. An empirical study by Liebig et al. [4]
revealed that 15.6% of the preprocessor annotations in 40 open
source C projects are undisciplined.

As mentioned throughout the paper, like Schulze et al. [5],
we focused on the same dependent variables (time and cor-
rectness), but found different results. This way, we conclude
that more research should be conducted on the discipline topic.
Previously [3], we interviewed 40 developers and performed
a survey with 202 participants to understand their preferences
regarding the discipline of annotations. Most of the developers
agreed that undisciplined annotations impact negatively on
maintenance and error proneness. By using a different method
(pull requests), we achieved similar results.

There are some approaches to refactor C code with prepro-
cessor directives. For instance, Baxter and Mehlich proposed
DMS, a source-code transformation tool for C/C++ [2], [6].
The DMS tool focuses on reverse engineering to gather design
information and to ease maintenance tasks. Platoff et al. [31]
also proposed the PTT tool to refactor C. However, these
tools use heuristics and limit developers to annotate only disci-
plined annotations, that is, conditional directives that surround
only entire functions, type definitions, and statements. Other
approaches consider undisciplined preprocessor directives.
For instance, Garrido and Johnson [17], [27] developed the
CRefactory tool, that provides C refactorings such as renaming
functions and extracting macros [29]. Liebig et al. [4] also
proposed a variability-aware refactoring approach to refactor
C with undisciplined annotations, considering all possible con-
figurations of the source code at the same time [28]. Garrido
and Johnson [27] and Schulze et al. [5] also discussed about
ways of converting undisciplined into disciplined annotations

by cloning code. To minimize bias in our experiments, we
used refactorings that do not clone code [19].

Bugs that appear only in some configurations have been de-
tected in popular C systems, such as the Linux Kernel, Apache,
and Libssh. Many studies have analyzed software repositories
to understand the characteristics of bugs that appear only
in some configurations [11], [32]-[34]. Abal et al. [32] and
Tartler et al. [35] analyzed the Linux Kernel repository to study
these bugs. In this sense, previous studies show that the use of
undisciplined annotations is error prone [7], [11], [17], [28].
To better support these studies, we considered correctness in
our experiment by counting how many times the participants
submitted incorrect solutions.

VII. CONCLUDING REMARKS

In this paper, we conducted two studies with respect to
the discipline of preprocessor-based annotations. In the first
one, we submitted 110 pull requests to discipline undisciplined
annotations we found. Only 11 have no decision yet. Almost
two thirds of the pull requests (63%) have been accepted by the
developers of the systems. However, because we are dealing
with opinions, we got contradicted answers (e.g., improves vs.
does not improve code comprehension). On the other hand,
18% of the pull requests got rejected because we submitted
them to deprecated and third-parties code. Nevertheless, when
asking the developers whether they would accept if it was
not the case, 50% responded positively. We then reached a
total acceptance rate of 71%. So, most of the developers
we contacted care about the discipline of preprocessor-based
annotations. Thus, undisciplined annotations seem important
and thus should not be neglected.

In the second study, we conducted a controlled experiment
to investigate a possible causal relationship between maintain-
ing undisciplined preprocessor-based code and two software
engineering attributes: productivity and error proneness. Ac-
cordingly, we measured and analyzed the total time and the
total number of errors observed during the execution of our
experiment—involving 30 participants that implemented six
typical maintenance scenarios adapted from real systems. As
a result, we found evidences that maintaining undisciplined
preprocessor-based code is a time-consuming and error-prone
task, in comparison with the activity of maintaining code that
only uses disciplined annotations.

In summary, when considering the data, setups, systems,
and tasks of our work, we have evidences to take the title of
this paper and let TAG be disabled!
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