
Safely Evolving Configurable Systems

Flávio Medeiros
Federal University of Campina Grande, Paraı́ba, Brazil

flaviomedeiros@copin.ufcg.edu.br

Abstract
Developers use configuration options to tailor systems to different
platforms. This configurability leads to exponential configuration
spaces and traditional tools (e.g., Gcc) check only one configu-
ration at a time. As a result, developers introduce configuration-
related issues (i.e., bad smells and faults) that appear only when
we select certain configuration options. By interviewing 40 devel-
opers and performing a survey with 202 developers, we found that
configuration-related issues are harder to detect and more critical
than issues that appear in all configurations. We propose a strategy
to detect configuration-related issues and an approach to improve
code quality (i.e., to remove bad smells in preprocessor directives
using a catalogue of refactorings). We found 131 faults and 500
bad smells in 40 real configurable systems, including Apache and
Libssh, ranging from 2.6 KLOC to 1.5 MLOC.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

Keywords Configuration-Related Issues, Software Variability

1. Research Problem and Motivation
A number of software systems provide configuration options to tai-
lor the system to different platforms. The inherent variability of
configurable systems leads to configuration spaces of exponential
sizes. It is commonly infeasible to explore the entire configuration
space exhaustively. As a result, developers introduce configuration-
related issues (i.e., bad smells and faults) when evolving config-
urable systems. For instance, Figure 1a depicts a bad smell in Gnu-
plot. Developers split up parts of an if statement with conditional
directives, as we can see at lines 2 and 7. To better understand this
problem, we perform interviews and a survey. We found that more
than 80% of developers agree that this type of directive impacts
code understanding, maintainability and error proneness [6]. Fur-
thermore, many configuration-related faults appear in this type of
conditional directive [3]. When evolving the code snippet of Fig-
ure 1a, developers introduce a configuration-related fault, as we
present in Figure 1b. We expose this syntax fault only when we
disable PM3D. Despite being easy to spot, traditional C compilers,
such as Gcc and Clang, report no warnings or error messages when
one compiles this code snippet without disabling PM3D. Thus, the
existing tool support is not adequate to detect configuration-related

issues. In this context, we found that configuration-related faults
remain in the code for several years [3, 7], and more than 74% of
developers believe that such issues are harder to detect and more
critical than issues that appear in all configurations [6].

 1. #ifdef PM3D
 2. if (rot_x <= 90){
 3. #endif
 4. ...
 5. #ifdef PM3D
 6. if (map) *t = text_angle;
 7. }
 8. #endif

 1. #ifdef PM3D
 2. if (rot_x <= 90){
 3. #endif
 4. ...
 5. if (map) *t = text_angle;
 6. }

(a) (b)

Figure 1. (a) Bad smell in a preprocessor conditional directive of
Gnuplot; and (b) Configuration-related fault in the Gnuplot project.

2. Background
The C preprocessor has received strong criticisms in research stud-
ies. In particular, many researchers and practitioners discussed the
problems of splitting up parts of statements with preprocessor con-
ditional directives [1, 3, 6]. By interviewing 40 developers (using
grounded theory) and performing a survey with 202 developers, we
found evidence that this type of conditional directive is a bad small
regarding preprocessor usage [6]. Despite the existence of refactor-
ings to remove these bad smells, they clone the source code [8],
i.e., impacting code quality.

Configuration-related issues appear only in some configura-
tions. Thus, more 74% of developers agree that they are harder to
detect than issues that appear in all configurations [6]. It is nor-
mally infeasible to check each system configuration separately. To
minimize the problems of checking the entire configuration space,
researchers proposed variability-aware tools that consider all con-
figurations simultaneously [2], and applied sampling analysis to
select only a subset of valid configurations [5]. Variability-aware
tools require a time-consuming initial setup [3, 7], and there is a
lack of studies comparing the efficiency of sampling algorithms.
To fill this gap, we compared 10 sampling algorithms using a set
of 135 known faults [5]. We identified algorithms that provide an
useful balance between the number of configurations selected for
analysis and the number of faults detected. For instance, the LSA
algorithm as presented in Figure 2. The effectiveness of sampling
for detecting configuration-related issues depends significantly on
how samples are selected.

80 90 100 110 120 130 140
0
2
4
6
8

10
12

Configuration−Related Faults

Sa
m

pl
es

 p
er

 F
ile

statement-coverage
pair-wise

three-wise

six-wise

five-wise

one-enabled
one-disabledall-enabled-disabled

LSA

Figure 2. Comparing sampling algorithms.

3. Approach
We found in a recent study that developers face configuration-
related issues in practice [6]. Hence, we propose an approach to
safely evolve configurable systems that supports developers to im-
prove code quality, and to detect configuration-related issues. In
this context, we propose a strategy to detect configuration-related
issues, including bad smells, undeclared functions and variables,
syntax errors, null pointer deferences, memory leaks, resource
leaks, and uninitialized variables. Furthermore, we propose a cat-
alogue of refactorings to remove bad smells in preprocessor direc-
tives. Our tool Colligens implements our strategy and applies our
refactorings automatically.

Our strategy to detect configuration-related issues supports sam-
pling and variability-aware analysis (see Figure 3). Notice that it
defines two alternative paths: one that applies sampling (Steps 1
and 2) and another for variability-aware analysis (Steps 3 and 4).
To perform sampling, our strategy needs a sampling algorithm [5]
(e.g., LSA) and a static analysis tool (e.g., Cppcheck).1 Moreover,
the strategy receives as input the code of the project, the constraints
among configuration options and the build-system information. In
Step 1, it uses the sampling algorithm to select a subset of valid
configurations, and Step 2 applies the analysis tool. To perform
variability-aware analysis, we create stubs (Step 3) to substitute
the external dependencies and to avoid the time-consuming initial
setup of variability-aware tools, such as TypeChef [2]. The stubs
contain all type definitions, which allow our strategy to ignore
the external dependencies defined through #include directives,
making the strategy scalable. In Step 4, we apply the variability-
aware tool the strategy receives as input. Last, Step 5 reports the
configuration-related issues detected by the strategy.

#ifdef
#endif

#endif
#ifdef

Source
Code

Co
nf

ig
ur

at
io

ns

Samples
#ifdef
#endif

#endif
#ifdef

1

...
...

#ifdef
Report

Constraints &
Build-System Information

Sampling
Algorithm

3

5

2

Variability-Aware Tool

Analysis
Tool

H

4

InputLegend: Output

Figure 3. Strategy to detect configuration-related issues.

Our refactorings are unidirectional transformation templates
that satisfy specific preconditions. The refactorings are simple
and local transformations without global impact. We can compose
refactorings to perform more coarse-grained transformations. By
removing bad smells, we improve code quality in the sense that
the refactored code contains no preprocessor directives that split
up parts of statements. For instance, Refactoring 1 shows how we
remove conditional directives that split up parts of if statements.
In this refactoring, we use an additional local variable and define
a precondition to avoid compilation errors. By applying Refactor-
ing 1, we can remove the bad smell presented in Figure 1a.

4. Results and Contributions
We evaluate our refactorings by applying our catalogue in 12 soft-
ware systems [4]. We detect and remove 477 occurrences of prepro-
cessor conditional directives that split up parts of statements (i.e.,
bad smells). Our catalogue of refactorings does not introduce code
clone, and increase the lines of code and number of conditional di-
rectives in 0.04% and 2.1% respectively. The results reveal that we

1 http://cppcheck.sourceforge.net/

Refactoring 1. 〈Remove incomplete if wrappers〉

1. #ifdef expression_1
2. if (condition_1) {
3. #endif
4. // Stmts_1
5. #ifdef expression_1
6. }
7. #endif

1. bool test = TRUE;
2. #ifdef expression_1
3. test = condition_1;
4. #endif
5. if (test) {
6. // Stmts_1
7. }

(→) variable test is not used in this scope.

can remove bad smell in preprocessor directives without cloning
the source code. In addition, we detect other kinds of bad smells: 7
unused functions and 16 unused variables (see Figure 4).

We also performed an additional empirical study using 40 soft-
ware systems. We instantiate our strategy to detect configuration-
related faults using the following tools: TypeChef, a variability-
aware tool; and Cppcheck, a static analysis tool used by devel-
opers of many open-source systems. We detect 24 syntax faults,
16 type faults (e.g., undeclared functions and variables), and 91
semantic faults (e.g., memory and resource leaks), totalling 131
configuration-related faults in 24 out of 40 software systems rang-
ing from 2.6 KLOC to 1.5 MLOC. Figure 4 presents these faults.
We confirmed all these faults by getting feedback from the actual
developers or by finding the fixes in the software repositories.

Unused Function 7 Bash (4), Libpng (1), M4 (1), Libpng (1)
Unused Variable 16 Bash (15), Libssh (1)
Split up parts of
statements with

directives
477

Apache (178), Bc (6), Dia (31), Expat (31),
Flex (16), Fvwm (61), Ghostscript (87), Gnuchess (2),

Gzip (19), Lighttpd (23), Lua (6), Mptris(17)

Syntax Fault 24
Apache (3), Bash (2), Cvs (1), Dia (2),

Gnuplot (5), Libpng (3), Libssh (2), Vim (4),
Xfig (1), Xterm (1)

Undeclared Variable 2 Gzip (1), Libpng (1)
Undeclared

Function
14 Bash (1), Gnuchess (1), Gzip (2), Libpng (6),

Lua (2), Libssh (1), Privoxy (1)

Uninitialized
Variable 31

Apache (4), Bash (3), Cherokee (4), Dia (3), Gawk (4),
Libsoup (1), Libssh (2), Lua (2), Mpsolve (1), Sqlite (5),

Vim (1), Xterm (1)

Memory Leak 27
Apache (2), Cherokee (3), Gawk (1), Fvwm (3), Kindb

(5), Gnuplot (5), Libssh (4), Vim (4)

Resource Leak 5
Cvs (1), Gnuplot (2), Kindb (2), Libxml (1), Lighttpd (1),

Sylpheed (1)
Deference of Null

Pointer
26 Apache (6), Bash (3), Cherokee (4), M4 (4), Privoxy (2),

Sylpheed (3), Vim (2), Xterm (2)

Figure 4. Configuration-related issues (bad smells and faults).

References
[1] M. Ernst, G. Badros, and D. Notkin. An empirical analysis of C

preprocessor use. IEEE Transactions on Software Engineering, 2002.
[2] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and

T. Berger. Variability-aware parsing in the presence of lexical macros
and conditional compilation. In Proceedings of OOPSLA. ACM, 2011.

[3] F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating preprocessor-
based syntax errors. In Proceedings of GPCE. ACM, 2013.

[4] F. Medeiros, M. Ribeiro, R. Gheyi, and B. Fonseca. A catalogue of
refactorings to remove incomplete annotations. Journal of Universal
Computer Science, 2014.

[5] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel. Reasoning
about sampling algorithms for configurable systems. Technical Report
TR-15-001, Federal University of Campina Grande, 2015.

[6] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi. The
love/hate relationship with the C preprocessor: An interview study. In
Proceedings of ECOOP, 2015.

[7] F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and R. Gheyi.
An empirical study on configuration-related issues: Investigating un-
declared and unused identifiers. In Proceedings of GPCE. ACM, 2015.

[8] S. Schulze, J. Liebig, J. Siegmund, and S. Apel. Does the discipline of
preprocessor annotations matter? A controlled experiment. In Proceed-
ings of GPCE, 2013.

http://cppcheck.sourceforge.net/

	Research Problem and Motivation
	Background
	Approach
	Results and Contributions

